3£®¸ø³öÏÂÁнáÂÛ£º
¶¯µãM£¨x£¬y£©·Ö±ðµ½Á½¶¨µã£¨-3£¬0£©¡¢£¨3£¬0£©Á¬ÏßµÄбÂÊÖ®³Ë»ýΪ$\frac{16}{9}$£¬ÉèM£¨x£¬y£©µÄ¹ì¼£ÎªÇúÏßC£¬F1¡¢F2£¬·Ö±ðΪÇúÏßCµÄ×ó¡¢ÓÒ½¹µã£¬ÔòÏÂÁÐ˵·¨ÖУº
£¨1£©ÇúÏßCµÄ½¹µã×ø±êΪF1£¨-5£¬0£©¡¢F2£¨5£¬0£©£»
£¨2£©µ±x£¼0ʱ£¬¡÷F1MF2µÄÄÚÇÐÔ²Ô²ÐÄÔÚÖ±Ïßx=-3ÉÏ£»
£¨3£©Èô¡ÏF1MF2=90¡ã£¬Ôò${S_{¡÷{F_1}M{F_2}}}$=32£»
£¨4£©ÉèA£¨6£¬1£©£¬Ôò|MA|+|MF2|µÄ×îСֵΪ2$\sqrt{2}$£»
ÆäÖÐÕýÈ·µÄÐòºÅÊÇ£º¢Ù¢Ú£®

·ÖÎö £¨1£©£¬ÓÉÇúÏßCµÄ±ê×¼·½³Ì¿ÉµÃc=$\sqrt{16+9}$=5£»
£¨2£©ÉèAΪÄÚÇÐÔ²ÓëxÖáµÄÇе㣬ÓÉÓÚ|F2M|-|F1M|=|F2A|-|F1A|=2a=6£¬|F2A|+|F1A|=2c=10£¬¿ÉµÃ|F2A|=8£¬|F1A|=2£¬½âµÃxA£¬¼´¿ÉÅжϳö£»
£¨3£©£¬Éè|F1M|=m£¬|F1M|=n£¬m£¾n£¬ÓÉm2+n2=102£¬m-n=6£¬µÃmn¼´¿É£»
£¨4£©²»·ÁÉèµãMÔÚË«ÇúÏßµÄÓÒÖ§ÉÏ£¬¸ù¾Ý¶¨Òå¿ÉµÃ|MF1|-|MF2|=2a=6£¬¿ÉµÃ|MA|+|MF2|=|MA|+|MF1|-6£¬µ±A¡¢M¡¢F1Èýµã¹²Ïßʱ£¬|MA|+|MF2|µÄ×îСֵΪ|AF1|-6£®

½â´ð ½â£ºÓÉÌâÒâ¿ÉµÃ$\frac{y}{x-3}•\frac{y}{x+3}=\frac{16}{9}$£¬»¯Îª$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1$£¨x¡Ù¡À3£©£®
¶ÔÓÚ£¨1£©£¬ÓÉÇúÏßCµÄ±ê×¼·½³Ì¿ÉµÃc=$\sqrt{16+9}$=5£¬¡àÇúÏßCµÄ½¹µã×ø±êΪF1£¨-5£¬0£©¡¢F2£¨5£¬0£©£¬ÕýÈ·£»
¶ÔÓÚ£¨2£©ÉèAΪÄÚÇÐÔ²ÓëxÖáµÄÇе㣬¡ß|F2M|-|F1M|=|F2A|-|F1A|=2a=6£¬|F2A|+|F1A|=2c=10£¬¡à|F2A|=8£¬|F1A|=2£¬¡à5-xA=8£¬½âµÃxA=-3£®ÉèÔ²ÐÄP£¬ÔòPO¡ÍxÖᣬ´Ó¶ø¿ÉµÃÔ²ÐÄÔÚÖ±Ïßx=-3ÉÏ£¬Òò´ËÕýÈ·£»
¶ÔÓÚ£¨3£©£¬Éè|F1M|=m£¬|F1M|=n£¬m£¾n£¬¡ß¡ÏF1MF2=90¡ã£¬¡àm2+n2=102£¬m-n=6£¬
¡àS${\;}_{¡÷{F}_{1}M{F}_{2}}$=$\frac{1}{2}$mn=16£¬¹Ê´í£»
¶ÔÓÚ£¨4£©£¬²»·ÁÉèµãMÔÚË«ÇúÏßµÄÓÒÖ§ÉÏ£¬¡ß|MF1|-|MF2|=2a=6£¬¡à|MA|+|MF2|=|MA|+|MF1|-6£¬µ±A¡¢M¡¢F1Èýµã¹²Ïßʱ£¬|MA|+|MF2|µÄ×îСֵΪ|AF1|-6=$\sqrt{122}$-6£®Òò´Ë²»ÕýÈ·£®
×ÛÉϿɵãºÕýÈ·ÃüÌâµÄÐòºÅÊÇ£¨1£©£¨2£©£®
¹Ê´ð°¸Îª£º£¨1£©£¨2£©£®

µãÆÀ ±¾Ì⿼²éÁËË«ÇúÏߵĶ¨Òå±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Èý½ÇÐεÄÄÚÇÐÔ²µÄÐÔÖÊ¡¢Ð±ÂʼÆË㹫ʽ£¬¿¼²éÁËת»¯ÄÜÁ¦£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªº¯Êýf£¨x£©=ax2+bx+xlnxÔÚ£¨1£¬f£¨1£©£©£©´¦µÄÇÐÏß·½³ÌΪ3x-y-2=0
£¨¢ñ£©ÇóʵÊýa¡¢bµÄÖµ
£¨¢ò£©Éèg£¨x£©=x2-x£¬Èôk¡ÊZ£¬ÇÒk£¨x-2£©£¼f£¨x£©-g£¨x£©¶ÔÈÎÒâµÄx£¾2ºã³ÉÁ¢£¬ÇókµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®É躯Êýf£¨x£©=$\frac{1}{3}$x3+$\frac{1}{2}$ax2+£¨a+3£©x+3£¬ÆäÖÐa¡ÊR£¬º¯Êýf£¨x£©ÓÐÁ½¸ö¼«Öµµãx1£¬x2£¬ÇÒ0¡Üx1£¼1£®
£¨1£©ÇóʵÊýaµÄÈ¡Öµ·¶Î§£»
£¨2£©É躯Êý¦Õ£¨x£©=f¡ä£¨x£©-a£¨x-x1£©£¬µ±x1£¼x£¼x2ʱ£¬ÇóÖ¤£º|¦Õ£¨x£©|£¼9£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÔ³¤·½ÐÎABCD-A1B1C1D1µÄÀâAB£¬AD£¬AA1ËùÔÚµÄÖ±ÏßΪ×ø±êÖὨÁ¢¿Õ¼äÖ±½Ç×ø±êϵ£¬ÇÒ³¤·½ÌåµÄÀâAB=1£¬AD=2£¬AA1=4£¬ÔòÀâCC1Öеã×ø±êΪ£¨¡¡¡¡£©
A£®£¨1£¬1£¬1£©B£®£¨1£¬2£¬2£©C£®£¨1£¬2£¬4£©D£®£¨1£¬1£¬2£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ£¬ËıßÐÎABCDÓëBDEF¾ùΪÁâÐΣ¬ÉèACÓëBDÏཻÓÚµãO£¬Èô¡ÏDAB=¡ÏDBF=60¡ã£¬ÇÒFA=FC£®
£¨1£©ÇóÖ¤£ºFO¡ÍƽÃæABCD£»  
£¨2£©Çó¶þÃæ½ÇA-FC-BµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®º¯Êý$f£¨x£©=tan£¨2x-\frac{¦Ð}{6}£©$µÄ×îСÕýÖÜÆÚÊÇ£¨¡¡¡¡£©
A£®$\frac{¦Ð}{2}$B£®¦ÐC£®2¦ÐD£®4¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÑÖªf£¨x£©=x2+4x£¬ÇÒf£¨2cos¦È-1£©=m£¬ÔòmµÄ×îСֵÊÇ-4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖªº¯Êýf£¨x£©=|x+3|+2£¬g£¨x£©=kx+1£¬Èô·½³Ìf£¨x£©=g£¨x£©ÓÐÁ½¸ö²»ÏàµÈµÄʵ¸ù£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-$\frac{1}{3}$£¬+¡Þ£©B£®£¨$\frac{1}{3}$£¬1£©C£®£¨-¡Þ£¬-$\frac{1}{3}$£©D£®£¨-1£¬-$\frac{1}{3}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Éè·½³Ì2x+x+2=0ºÍ·½³Ìlog2x+x+2=0µÄ¸ù·Ö±ðΪpºÍq£¬º¯Êýf £¨x£©=£¨x+p£©£¨x+q£©+2£¬Ôòf £¨2£©£¬f £¨0£©£¬f £¨3£©µÄ´óС¹ØϵΪf£¨3£©£¾f£¨2£©=f£¨0£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸