精英家教网 > 高中数学 > 题目详情
如图,在几何体中,点在平面ABC内的正投影分别为A,B,C,且,E为中点,

(1)求证;CE∥平面
(2)求证:平面平面
详见解析

试题分析:(1)通过证明线线平行,证明线面平行,所以取的中点,连接,通过证明,从而证明;(2)根据已知条件:为正方形,证出,所以,所以,得出,,平面平面. 证明平行和垂直都是最基本的证明问题,要熟练掌握判定定理,可以由结论出发,逐步找到证明的充分条件,然后再逻辑顺序写出证明过程,属于中档题.
试题解析:(1)由题意知:


                         1分
中点,连,中点,

四边形为平行四边形
                              4分
,
                        6分
(2),
,,        8分


四边形为正方形,          10分
,

平面平面                  12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在四棱锥中,底面是正方形,交于点底面的中点.

(1)求证:平面
(2)若,在线段上是否存在点,使平面?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,是边长为2的正三角形,若平面,平面平面,,且

(Ⅰ)求证://平面
(Ⅱ)求证:平面平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,是圆的直径,垂直于圆所在的平面,是圆上的点.

(1)求证:平面平面
(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图所示的几何体中,是边长为2的正三角形. 若平面,平面平面, ,且

(1)求证://平面;
(2)求证:平面平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知平面,直线,且有,则下列四个命题正确的个数为(    )
①若;②若;③若;④若
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

l是直线,αβ是两个不同的平面 (  ).
A.若lαlβ,则αβ
B.若lαlβ,则αβ
C.若αβlα,则lβ
D.若αβlα,则lβ

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正四面体PABC中,DEF分别是ABBCCA的中点,下面四个结论中不成立的(  ).
A.BC∥平面PDFB.DF⊥平面PAE
C.平面PDF⊥平面ABCD.平面PAE⊥平面ABC

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正方体中,,点的中点,点上,若,则线段的长度等于______

查看答案和解析>>

同步练习册答案