精英家教网 > 高中数学 > 题目详情
5.圆C1:(x+2)2+(y-2)2=1与圆C2:(x-2)2+(y-5)2=r2相切,则r为(  )
A.4B.6C.4或6D.不确定

分析 求出两个圆的圆心和半径,根据两圆相切的等价条件建立方程关系进行求解即可.

解答 解:圆C1:(x+2)2+(y-2)2=1的圆心C1(-2,2),半径R=1,
圆C2:(x-2)2+(y-5)2=r2的圆心C2(2,5),半径为r,
则|C1C2|=$\sqrt{(-2-2)^{2}+(5-2)^{2}}$=$\sqrt{{4}^{2}+{3}^{2}}=5$,
若两圆外切,则r+R=5,即r=5-R=5-1=4,
若两圆内切,则r-R=5,即r=5+R=5+1=6,
故选:C

点评 本题主要考查圆与圆的位置关系的判断,根据圆心之间的距离和两圆半径之间的关系是解决本题的关键.注意要进行分类讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知f(x)=x+ax-1(a>0),
(1)若f(1)=2且f(m)=5,求m2+m-2的值;
(2)求实数a的范围使函数f(x)在区间(1,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}为等差数列,a2=3,a3+a6=11.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若${b_n}=2({a_n}+\frac{1}{{{2^{a_n}}}})$,其中n∈N*,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.满足{1,2}⊆A⊆{1,2,3,4},则满足条件的集合A的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线1在直角坐标系xOy中的参数方程为$\left\{\begin{array}{l}x=2+tcoaα\\ y=1+tsinα\end{array}\right.$(t为参数,α为倾斜角),曲线C的极坐标方程为ρ=2cosθ(其中坐标原点O为极点,x轴非负半轴为极轴.取相同单位长度).
(1)写出曲线C的直角坐标方程;
(2)若曲线C与直线l相交于不同的两点M,N,设P(2,1),求|PM|+|PN|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知圆C1:x2+y2+6x=0关于直线l1:y=2x+1对称的圆为C.
(1)求圆C的方程;
(2)过点(-1,0)作直线l与圆C交于A,B两点,O是坐标原点.设$\overrightarrow{OS}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,是否存在这样的直线l,使得四边形OASB的对角线相等?若存在,求出所有满足条件的直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知直线l1:x+y-3=0,l2:x-y十1=0,且A为两直线的交点.
(1)求点A的坐标;
(2)求过点A且斜率为2的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在锐角△ABC中,内角∠A、∠B、∠C的对边分别为a、b、c,已知a=$\sqrt{2}$bsinA.
(1)求∠B的大小;
(2)若AO是边BC上的中线,AO=BC=2,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=2sin(ωx+φ),函数图象上的一个最高点为(2,2),由此最高点到相邻的最低的曲线与x轴交于点(6,0).
(1)求函数的解析式;
(2)求函数取得最小值时x的值及函数的单调区间.

查看答案和解析>>

同步练习册答案