精英家教网 > 高中数学 > 题目详情
(2011•广州模拟)如图,在△ABC中,点D在BC边上,AD=33,sin∠BAD=
5
13
,cos∠ADC=
3
5

(1)求sin∠ABD的值;
(2)求BD的长.
分析:(1)通过cos∠ADC=
3
5
,求出sin∠ADC,利用sin∠BAD=
5
13
,求出cos∠BAD,通过sin∠ABD=sin(∠ADC-∠BAD),直接利用两角差的正弦函数求解即可.
(2)在△ABD中,由正弦定理,直接求BD的长.
解答:(本小题满分12分)
解:(1)因为cos∠ADC=
3
5

所以sin∠ADC=
1-cos2∠ADC
=
4
5
.…(2分)
因为sin∠BAD=
5
13

所以cos∠BAD=
1-sin2∠BAD
=
12
13
.…(4分)
因为∠ABD=∠ADC-∠BAD,
所以sin∠ABD=sin(∠ADC-∠BAD)
=sin∠ADCcos∠BAD-cos∠ADCsin∠BAD …(6分)
=
4
5
×
12
13
-
3
5
×
5
13
=
33
65
.…(8分)
(2)在△ABD中,由正弦定理,得
BD
sin∠BAD
=
AD
sin∠ABD
,…(10分)
所以BD=
AD×sin∠BAD
sin∠ABD
=
33×
5
13
33
65
=25
.…(12分)
点评:本题考查三角函数的化简求值,角的变换的技巧,正弦定理的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广州模拟)已知函数f(x)=cos2x+
3
sinxcosx-
1
2

(Ⅰ)若x∈[0,
π
2
]
,求f(x)的最大值及取得最大值时相应的x的值;
(Ⅱ)在△ABC中,a、b、c分别为角A、B、C的对边,若f(
A
2
)=1
,b=l,c=4,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•广州模拟)定义:若函数f(x)的图象经过变换T后所得图象对应函数的值域与f(x)的值域相同,则称变换T是f(x)的同值变换.下面给出四个函数及其对应的变换T,其中T不属于f(x)的同值变换的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•广州模拟)已知实数x,y满足
x≥0
y≤1
2x-2y+1≤0.
,若目标函数z=ax+y(a≠0)取得最小值时最优解有无数个,则实数a的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•广州模拟)设随机变量X~N(1,52),且P(X≤0)=P(X>a-2),则实数a的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•广州模拟)已知直线y=k(x-2)(k>0)与抛物线y2=8x相交于A、B两点,F为抛物线的焦点,若|FA|=2|FB|,则k的值为
2
2
2
2

查看答案和解析>>

同步练习册答案