精英家教网 > 高中数学 > 题目详情
20.函数f(x)=x+ex 的图象在点O (0,1)处的切线方程是y=2x+1.

分析 求出函数f(x)的导数,求得切线的斜率,运用斜截式方程,即可得到所求切线方程.

解答 解:函数f(x)=x+ex 的导数为f′(x)=1+ex
函数f(x)=x+ex 的图象在点O (0,1)处的切线斜率为1+e0=2,
即有函数f(x)=x+ex 的图象在点O (0,1)处的切线方程为y=2x+1.
故答案为:y=2x+1.

点评 本题考查导数的运用:求切线方程,注意正确求导和运用斜截式方程是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.如图,在△ABC中,AB=2,AC=3,∠BAC=60°,AD是∠BAC的角平分线交BC于D,则$\overrightarrow{AD}$$•\overrightarrow{AC}$的值等于(  )
A.$\frac{17}{5}$B.$\frac{33}{5}$C.6D.$\frac{27}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=a-\frac{2}{{{2^x}+1}}(a∈R)$是奇函数.
(1)求a的值;
(2)判断函数f(x)的单调性,(不需证明)
(3)若对任意的t∈R,不等式f(kt2+2)+f(t2-tk)>0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若10件产品中有7件正品,3件次品,从中任取2件,则恰好取到1件次品的概率是(  )
A.$\frac{3}{7}$B.$\frac{7}{15}$C.$\frac{8}{15}$D.$\frac{4}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设0<x<1,a,b都为大于零的常数,则$\frac{{a}^{2}}{x}$+$\frac{{b}^{2}}{1-x}$的最小值为(  )
A.(a-b)2B.(a+b)2C.a2b2D.a2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设集合M={x|-4≤x<2},集合N={x|3x<$\frac{1}{9}\}$,则M∩N中所含整数的个数为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.log36-log32=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.某单位有职工100人,不到35岁的有45人,35岁到49岁的25人,剩下的为50岁以上的人,现在抽取20人,按年龄段进行分层抽样,50岁以上应抽取的人数为6人.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设集合A={x|x2-5x+6<0},B={x|2x-5>0},则A∩B=(  )
A.$(-3,-\frac{5}{2})$B.$(2,\frac{5}{2})$C.$(\frac{5}{2},3)$D.$(-3,\frac{5}{2})$

查看答案和解析>>

同步练习册答案