精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=x2+sinx+ex•cosx
(1)求该函数的导数f′(x)
(2)求函数f(x)在x=0处的切线方程.

分析 (1)利用导数公式,求该函数的导数f′(x);
(2)求出切线斜率,即可求函数f(x)在x=0处的切线方程.

解答 解:(1)f′(x)=2x+cosx+(ex)′cosx+ex(cosx)′=2x+cosx+ex(cosx-sinx)…(5分)
(2)k=f′(0)=2,切点为(0,1).所以切线方程为y=2x+1…(5分)

点评 本题考查导数的几何意义,考查导数的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.集合M={x|-2≤x≤5}.
(1)若M⊆N,N={x|m-6≤x≤2m-1},求m的取值范围;
(2)若N⊆M,N={x|m+1≤x≤2m-1},求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项积为Tn,即Tn=a1a2…an
(1)若数列{an}为首项为2016,公比为$q=-\frac{1}{2}$的等比数列,
①求Tn的表达式;②当n为何值时,Tn取得最大值;
(2)当n∈N*时,数列{an}都有an>0且${T_n}•{T_{n+1}}={({a_1}{a_n})^{\frac{n}{2}}}{({a_1}{a_{n+1}})^{\frac{n+1}{2}}}$成立,求证:{an}为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在平面直角坐标系内,点P(x0,y0)到直线Ax+By+C=0的距离d=$\frac{|A{x}_{0}+B{y}_{0}+C|}{\sqrt{{A}^{2}+{B}^{2}}}$运用类比的思想,我们可以解决下面问题:在空间内直角坐标系内,点 P(2,1,1)到平面3x+4y+12z+4=0的距离d=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.用数学归纳法证明“$1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{2^n}<f(n)$”时,由n=k不等式成立,证明n=k+1时,左边应增加的项数是(  )
A.2k-1B.2k-1C.2kD.2k+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=ax-1+2的图象恒过定点(  )
A.(3,1)B.(0,2)C.(1,3)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=$\frac{{x}^{2}}{\sqrt{1-x}}$+lg(2x+1)的定义域为(-$\frac{1}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知幂函数f(x)=xα图象过点$(\sqrt{2},2)$,则f(9)=81.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数y=-x2+2x+3在区间[0,4)上的值域是(  )
A.[-5,3]B.[-5,4]C.(-5,3]D.(-5,4]

查看答案和解析>>

同步练习册答案