精英家教网 > 高中数学 > 题目详情
10.函数$y=\sqrt{1-2x}$的反函数的值域是$(-∞,\frac{1}{2}]$.

分析 反函数的值域是原函数的定义域,即可得出.

解答 解:由函数$y=\sqrt{1-2x}$,可得1-2x≥0,解得x$≤\frac{1}{2}$,可得原函数的定义域:$(-∞,\frac{1}{2}]$.
则反函数的值域是$y=\sqrt{1-2x}$的定义域$(-∞,\frac{1}{2}]$.
故答案为:$(-∞,\frac{1}{2}]$.

点评 本题考查了函数的定义域、不等式的解法、互为反函数的性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.一扇形的圆心角为60°,所在圆的半径为6,则它的面积是(  )
A.B.C.12πD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=2+$\frac{1}{a}-\frac{1}{{{a^2}x}}$(实数a≠0),
(1)若m<n<0,请判断函数f(x)在区间[m,n]上的单调性并证明;
(2)若$\frac{8}{7}$≤m<n且a>0时,函数f(x)的定义域和值域都[m,n],求n-m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.把一个圆锥截成圆台,已知圆台的上、下底面半径分别为1cm、4cm,母线长10cm.
求:(1)圆锥的母线长;(2)圆台表面积;(3)圆台体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.方程lg(x2-3)=lg(3x-5)的解是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,一个长为5、宽为3的矩形被平行于边的两条直线所分割,其中矩形的左上角是一个是一个边长为x的正方形
(1)若图中阴影部分的面积为S,试写出S关于x的函数解析式,并标明自变量x的取值范围;
(2)若(1)中的函数解析式为S(x),求出S(x)的最小值,并指明S(x)取得最小值时对应的自变量x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若f(x)=|log2x|-m有两个零点x1,x2(x1>x2),则${x_1}^2+4{x_2}^2$的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x2-2ax+a(a为实常数).设$h(x)=\frac{f(x)}{x}$,证明:当a<1时,h(x)在[1,+∞)上单调递增.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.己知函数f(x)=x3-3x,若过点A(1,m)可作曲线y=f(x)的三条切线,则实数m的取值范围是(  )
A.-1<m<1B.-4<m<4C.-1<m<-2D.-3<m<-2

查看答案和解析>>

同步练习册答案