精英家教网 > 高中数学 > 题目详情

【题目】已知点H(0,﹣8),点P在x轴上,动点F满足PF⊥PH,且PF与y轴交于点Q,Q为线段PF的中点.
(1)求动点F的轨迹E的方程;
(2)点D是直线l:x﹣y﹣2=0上任意一点,过点D作E的两条切线,切点分别为A、B,取线段AB的中点,连接DM交曲线E于点N,求证:直线AB过定点,并求出定点的坐标.

【答案】
(1)解:设F(x,y),∵Q是PF的中点,Q在y轴上,P在x轴上,

∴P(﹣x,0),又H(0,﹣8),∴kPF= ,kPH=

∵PF⊥PH,∴ ,即x2=4y.

∴动点F的轨迹E的方程x2=4y


(2)解:证明:设直线AB的方程为y=kx+b,

联立方程组 ,消去y得:x2﹣4kx﹣4b=0,

设A(x1,y1),B(x2,y2),则 ,且△=16k2+16b.

以点A为切点的切线的斜率为kP= x1,其切线方程为y﹣y1= x1(x﹣x1),

即y= x1x﹣ x12

同理过点Q的切线的方程为y= x2x﹣ x22

联立方程组

即D(2k,﹣b),∵D在直线x﹣y﹣2=0上,

∴2k﹣(﹣b)﹣2=0,即b=2﹣2k,

所以直线AB的方程y=kx+2﹣2k,即y=k(x﹣2)+2,显然该直线恒过定点(2,2).


【解析】(1)设F(x,y),用x,y表示出P点坐标,求出PF、PH的斜率,根据PF⊥PH列方程化简即可;(2)设AB方程为y=kx+b,联立方程组得出A,B坐标的关系,利用导数的几何意义得出切线方程,从而求得D点坐标,得出k,b的关系,即可得出结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校从高一年级学生中随机抽取100名学生,将他们期中考试的数学成绩(均为整数)分成六段:[40,50),[50,60),…,[90,100]后得到频率分布直方图(如图所示).则分数在[70,80)内的人数是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=2lnx﹣ ﹣m,若关于x的方程f(f(x))=x恰有两个不相等的实数根,则m的取值范围是(
A.(2ln3﹣4,+∞)
B.(﹣∞,2ln3﹣4)
C.(﹣4,+∞)
D.(﹣∞,﹣4)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2.5cos(ωx+φ)(ω>0,|φ|< )的部分图象如图所示,M、N两点之间的距离为13,且f(3)=0,若将函数f(x)的图象向右平移t(t>0)个单位长度后所得函数的图象关于坐标原点对称,则t的最小值为(
A.7
B.8
C.9
D.10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列{an}的前n项和为Sn , 已知a2=7,a3为整数,且Sn的最大值为S5
(1)求{an}的通项公式;
(2)设bn= ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某三棱锥的三视图如图所示,则该三棱锥的表面积是(
A.2+
B.4+
C.2+2
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知美国苹果公司生产某款iphone手机的年固定成本为40万美元,每生产1只还需另投入16美元.设苹果公司一年内共生产该款iphone手机x万只并全部销售完,每万只的销售收入为R(x)万美元,且R(x)=
(1)写出年利润W(万元)关于年产量x(万只)的函数解析式;
(2)当年产量为多少万只时,苹果公司在该款手机的生产中所获得的利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是2017年第一季度五省GDP情况图,则下列陈述中不正确的是(  )

A. 2017年第一季度总量和增速由高到低排位均居同一位的省只有1个

B. 与去年同期相比,2017年第一季度五个省的总量均实现了增长

C. 去年同期河南省的总量不超过4000亿元

D. 2017年第一季度增速由高到低排位第5的是浙江省

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆直线.

(1)求与圆相切且与直线垂直的直线方程

(2)在直线为坐标原点),存在定点(不同于点),满足:对于圆上任一点都有为一常数试求所有满足条件的点的坐标.

【答案】(1)(2)答案见解析.

【解析】试题分析:

(1)设所求直线方程为利用圆心到直线的距离等于半径可得关于b的方程,解方程可得则所求直线方程为

(2)方法1:假设存在这样的点由题意可得,然后证明为常数为即可.

方法2:假设存在这样的点,使得为常数,则据此得到关于的方程组,求解方程组可得存在点对于圆上任一点,都有为常数.

试题解析:

(1)设所求直线方程为,即

∵直线与圆相切,∴,得

∴所求直线方程为

(2)方法1:假设存在这样的点

为圆轴左交点时,

为圆轴右交点时,

依题意,,解得,(舍去),或.

下面证明点对于圆上任一点,都有为一常数.

,则

从而为常数.

方法2:假设存在这样的点,使得为常数,则

,将代入得,

,即

恒成立,

,解得(舍去),

所以存在点对于圆上任一点,都有为常数.

点睛:求定值问题常见的方法有两种:

(1)从特殊入手,求出定值,再证明这个值与变量无关.

(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.

型】解答
束】
22

【题目】已知函数的导函数为其中为常数.

(1)当的最大值并推断方程是否有实数解

(2)若在区间上的最大值为-3,的值.

查看答案和解析>>

同步练习册答案