精英家教网 > 高中数学 > 题目详情
已知直线 a和平面?=l,a,a,a在内的射影分别为直线 b 和 c ,则 b 和 c 的位置关系是(   )
A.相交或平行B.相交或异面
C.平行或异面D.相交﹑平行或异面
D

试题分析:解:由题意,若a∥l,则利用线面平行的判定,可知a∥α,a∥β,从而a在α,β内的射影直线b和c平行;若a∩l=A,则a在α,β内的射影直线b和c相交于点A;若a∩α=B,a∩β=C,且直线a和l垂直,则a在α,β内的射影直线b和c相交;否则直线b和c异面,综上所述,b和c的位置关系是相交﹑平行或异面,故选D
点评:本题考查线线位置关系,考查线面平行,线面垂直,解题的关键是正确分类,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如图,平面α⊥平面βAαBβAB与平面α所成的角为,过AB分别作两平面交线的垂线,垂足为A′、B′,若,则AB与平面β所成的角的正弦值是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知两个正方形ABCD 和DCEF不在同一平面内,且平面ABCD ⊥平面DCEF,M,N分别为AB,DF的中点。

(1)求直线MN与平面ABCD所成角的正弦值;
(2)求异面直线ME与BN所成角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱的所有棱长都为2,中点,平面

(1)求证:平面
(2)求二面角的余弦值;
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)
已知:如图,中,是角平分线。求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
如图,四棱锥P—ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点。

(1)求证:CD⊥AE;
(2)求证:PD⊥面ABE。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两条不同直线及平面,则直线的一个充分条件是  (    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点.

(1)求证:EF∥平面CB1D1
(2)求证:平面CAA1C1⊥平面CB1D1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在三棱锥中, 两两垂直, 且.设是底面内一点,定义,其中分别是三棱锥M-PAB、 三棱锥M-PBC、三棱锥M-PCA的体积.若,且恒成立,则正实数的最小值为_____.

查看答案和解析>>

同步练习册答案