精英家教网 > 高中数学 > 题目详情
(2013•长春一模)数列{an}的前n项和是Sn,且Sn+
1
2
an=1

(1)求数列{an}的通项公式;
(2)记bn=log3
a
2
n
4
,数列{
1
bnbn+2
}
的前n项和为Tn,证明:Tn
3
16
分析:(1)由Sn+
1
2
an=1
,先分别令n=1,2,3,求出a1=
2
3
,a2=
2
9
,a3=
2
27
.由此猜想an=
2
3n
.再用数学归纳法证明.
(2)由an=
2
3n
,知bn=log3
a
2
n
4
=log33-2n=-2n,故
1
bnbn+2
=
1
(-2n)•[-2(n+2)]
=
1
4n(n+2)
=
1
8
1
n
-
1
n+2
),由此利用裂项求和法能够证明数列{
1
bnbn+2
}
的前n项和Tn
3
16
解答:解:(1)∵Sn+
1
2
an=1

a1+
1
2
a1
=1,解得a1=
2
3

2
3
+a2+
1
2
a2
=1,解得a2=
2
9

2
3
+
2
9
+a3+
1
2
a3=1
,解得a3=
2
27

由此猜想an=
2
3n

用数学归纳法证明:
①当n=1时,a1=
2
3
,成立;
②假设n=k时成立,即ak=
2
3k

则当n=k+1时,
2
3
+
2
32
+…+
2
3k
+ak+1+
1
2
ak+1 
=1,
3
2
ak+1=1-
2
3
(1-
1
3k
)
1-
1
3
=
1
3k
,解得ak+1=
2
3k+1
,也成立.
∴an=
2
3n

(2)∵an=
2
3n

bn=log3
a
2
n
4
=log33-2n=-2n,
1
bnbn+2
=
1
(-2n)•[-2(n+2)]
=
1
4n(n+2)
=
1
8
1
n
-
1
n+2
),
∵数列{
1
bnbn+2
}
的前n项和为Tn
∴Tn=
1
8
[(1-
1
3
)+(
1
2
-
1
4
)+(
1
3
-
1
5
)+…+(
1
n-2
-
1
n
)+(
1
n-1
-
1
n+1
)+(
1
n
-
1
n+2
)]
=
1
8
(1+
1
2
-
1
n+1
-
1
n+2

=
3
16
-
1
n+1
-
1
n+2
3
16

Tn
3
16
点评:本题考查数列的通项公式的求法,考查不等式的证明.解题时要认真审题,注意数学归纳法和裂项求和法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•长春一模)已知:x>0,y>0,且
2
x
+
1
y
=1
,若x+2y>m2+2m恒成立,则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•长春一模)已知函数f(x)=ex(ax2-2x-2),a∈R且a≠0.
(1)若曲线y=f(x)在点P(2,f(2))处的切线垂直于y轴,求实数a的值;
(2)当a>0时,求函数f(|sinx|)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•长春一模)椭圆
 x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
3
2
,右焦点到直线x+y+
6
=0
的距离为2
3
,过M(0,-1)的直线l交椭圆于A,B两点.
(Ⅰ) 求椭圆的方程;
(Ⅱ) 若直线l交x轴于N,
NA
=-
7
5
NB
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•长春一模)定义在R上的函数f(x)满足f(x)+f(x+5)=16,当x∈(-1,4]时,f(x)=x2-2x,则函数f(x)在[0,2013]上的零点个数是
604
604

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•长春一模)在正项等比数列{an}中,已知a1a2a3=4,a4a5a6=12,an-1anan+1=324,则n=(  )

查看答案和解析>>

同步练习册答案