精英家教网 > 高中数学 > 题目详情

在区间(0,1)内任取两个实数,则这两个实数之和小于0.8的概率是________.

0.32
分析:本题考查的知识点是几何概型的意义,关键是要找出(0,1)中随机地取出两个数所对应的平面区域的面积,及两数之和小于0.8对应的平面图形的面积大小,再代入几何概型计算公式,进行解答.
解答:解:解:设取出两个数为x,y;则
若这两数之和小于0.8,则有
根据几何概型,原问题可以转化为求不等式组表示的区域表示区域的面积之比问题,如图所示;当两数之和小于0.8时,对应点落在阴影上,
∵S阴影=
故在区间(0,1)中随机地取出两个数,
则两数之和小于0.8的概率P=
故答案为:0.32.
点评:几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若在区间(-1,1)内任取实数a,在区间(0,1)内任取实数b,则直线ax-by=0与圆(x-1)2+(y-2)2=1相交的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aln(x+1)-x2,若在区间(0,1)内任取两个实数p,q,且p≠q,不等式
f(p+1)-f(q+1)p-q
>1
恒成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在区间(0,1)内任取两个实数,则这两个实数的和大于
1
3
的概率为(  )
A、
17
18
B、
7
9
C、
2
9
D、
1
18

查看答案和解析>>

科目:高中数学 来源: 题型:

在区间(0,1)内任取一个数a,能使方程x2+2ax+
1
2
=0有两个相异的实根的概率为
1-
2
2
1-
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•广州模拟)在区间(0,1)内任取两个实数,则这两个实数之和小于0.8的概率是
0.32
0.32

查看答案和解析>>

同步练习册答案