精英家教网 > 高中数学 > 题目详情

【题目】已知下列命题:

①若,则“”是“”成立的充分不必要条件;

②若椭圆的两个焦点为,且弦过点,则的周长为16;

③若命题“”与命题“”都是真命题,则命题一定是真命题;

④若命题 ,则

其中为真命题的是__________(填序号).

【答案】①③

【解析】逐一分析所给的各个说法:

①∵abcR

ac2>bc2a>b

反之,当时,由不成立。

,则成立的充分不必要条件;

故①正确;

②若椭圆的两个焦点为F1,F2,且弦AB过点F1

则△ABF2的周长为4a=20,故②不正确;

③若命题p与命题pq都是真命题,

p是假命题,所以命题q一定是真命题,故③正确;

④若命题p:xR,x2+x+1<0,则p:xR,x2+x+10,故④错误

故答案为:①③

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)若曲线处的切线互相平行,求的值;

(2)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】祖暅是南北朝时代的伟大科学家,5世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积都相等,那么这两个几何体的体积一定相等.现有以下四个几何体:图①是从圆柱中挖出一个圆锥所得的几何体;图②、图③、图④分别是圆锥、圆台和半球,则满足祖暅原理的两个几何体为(  )

A. ①② B. ①③ C. ②④ D. ①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,记录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时,求的单调区间;

(2)当时, 恒成立,求的取值范围;

(3)求证:当时, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年5月13日第30届大连国际马拉松赛举行,某单位的10名跑友报名参加了半程马拉松、10公里健身跑、迷你马拉松3个项目(每人只报一项),报名情况如下:

项目

半程马拉松

10公里健身跑

迷你马拉松

人数

2

3

5

(其中:半程马拉松公里,迷你马拉松公里)

(1)从10人中选出2人,求选出的两人赛程距离之差大于10公里的概率;

(2)从10人中选出2人,设为选出的两人赛程距离之和,求随机变量的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题:
·(1)y=|cos(2x+ )|最小正周期为π;
·(2)函数y=tan 的图象的对称中心是(kπ,0),k∈Z;
·(3)f(x)=tanx﹣sinx在(﹣ )上有3个零点;
·(4)若 ,则
其中错误的是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)当时,求函数的单调区间;

(2)令,其图象上任意一点处切线的斜率恒成立,求实数的取值范围.

(3)当时,方程在区间内有唯一实数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校计划面向高一年级名学生开设校本选修课程,为确保工作的顺利实施,先按性别进行分层抽样,抽取了名学生对社会科学类,自然科学类这两大类校本选修课程进行选课意向调查,其中男生有人.在这名学生中选择社会科学类的男生、女生均为人.

(Ⅰ)分别计算抽取的样本中男生及女生选择社会科学类的频率,并以统计的频率作为概率,估计实际选课中选择社会科学类学生数;

(Ⅱ)根据抽取的名学生的调查结果,完成下列列联表.并判断能否在犯错误的概率不超过的前提下认为科类的选择与性别有关?

选择自然科学类

选择社会科学类

合计

男生

女生

合计

附: ,其中.

查看答案和解析>>

同步练习册答案