精英家教网 > 高中数学 > 题目详情
如图,已知圆G:(x-2)2+y2=r2是椭圆的内接△ABC的内切圆, 其中A为椭圆的左顶点。
(1)求圆G的半径r;
(2)过点M(0,1)作圆G的两条切线交椭圆于E,F两点,判断直线EF与圆G的位置关系并说明理由.
解:(1)设B,过圆心G作GD⊥AB于D,BC交长轴于H,
,即, ①
而点B在椭圆上,,②
由①、②式得,解得:(舍去)。
(2)设过点M(0,1)与圆相切的直线方程为:y-1=kx, ③
,即, ④
解得,
将③代入,则异于零的解为


则直线FE的斜率为:
于是直线FE的方程为,即
则圆心(2,0)到直线FE的距离, 故结论成立。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知圆G:(x-2)2+y2=r2是椭圆
x216
+y2=1
的内接△ABC的内切圆,其中A为椭圆的左顶点,
(1)求圆G的半径r;
(2)过点M(0,1)作圆G的两条切线交椭圆于E,F两点,证明:直线EF与圆G相切.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知圆G:(x-2)2+y2=r2是椭圆数学公式的内接△ABC的内切圆,其中A为椭圆的左顶点,
(1)求圆G的半径r;
(2)过点M(0,1)作圆G的两条切线交椭圆于E,F两点,证明:直线EF与圆G相切.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年辽宁省沈阳二中等重点中学协作体高考预测数学试卷04(文科)(解析版) 题型:解答题

如图,已知圆G:(x-2)2+y2=r2是椭圆的内接△ABC的内切圆,其中A为椭圆的左顶点,
(1)求圆G的半径r;
(2)过点M(0,1)作圆G的两条切线交椭圆于E,F两点,证明:直线EF与圆G相切.

查看答案和解析>>

科目:高中数学 来源:2009年江西省高考数学试卷(文科)(解析版) 题型:解答题

如图,已知圆G:(x-2)2+y2=r2是椭圆的内接△ABC的内切圆,其中A为椭圆的左顶点,
(1)求圆G的半径r;
(2)过点M(0,1)作圆G的两条切线交椭圆于E,F两点,证明:直线EF与圆G相切.

查看答案和解析>>

同步练习册答案