精英家教网 > 高中数学 > 题目详情

【题目】已知某圆圆心在x轴上,半径长为5,且截y轴所得线段长为8,求该圆的标准方程.

【答案】(x+3)2+y2=25或(x-3)2+y2=25.

【解析】

根据垂径定理得圆心到y轴距离,即得圆心横坐标,最后写圆的标准方程.

解:法一:如图所示,由题设|AC|=r=5,|AB|=8,

|AO|=4.RtAOC中,

|OC|=

设点C坐标为(a,0).则|OC|=|a|=3,a=±3.

∴所求圆的方程为(x+3)2+y2=25,或(x-3)2+y2=25.

法二:由题意设所求圆的方程为(x-a)2+y2=25.

∵圆截y轴线段长为8,∴圆过点A(0,4).代入方程得a2+16=25,a=±3.

∴所求圆的方程为(x+3)2+y2=25(x-3)2+y2=25.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足 ,记数列{an}的前n项和为Sn , cn=Sn﹣2n+2ln(n+1)
(1)令 ,证明:对任意正整数n,|sin(bnθ)|≤bn|sinθ|
(2)证明数列{cn}是递减数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1(a1)xyb0l2axby40求满足下列条件的ab的值.

(1)l1l2l1过点(1,1)

(2)l1l2l2在第一象限内与两坐标轴围成的三角形的面积为2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的偶函数,当时,.

(1)直接写出函数的增区间(不需要证明);

(2)求出函数的解析式;

(3)若函数,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市电视台为了宣传举办问答活动,随机对该市15~65岁的人群抽样了人,回答问题计结果如下图表所示:

1)分别求出的值;

(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,则第2,3,4组每组各抽取多少人?

(3)在(2)的前提下,电视台决定在所抽取的6人中随机抽取2人颁发幸运奖,求所抽取的人中第2组至少有1人获得幸运奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下四个命题中:
①某地市高三理科学生有15000名,在一次调研测试中,数学成绩 服从正态分布 ,已知 ,若按成绩分层抽样的方式抽取100份试卷进行分析,则应从120分以上(包括120分)的试卷中抽取 份;
②已知命题 ,则
③在 上随机取一个数 ,能使函数 上有零点的概率为
④设 ,则“ ”是“ ”的充要条件.
其中真命题的序号为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的前项和为等比数列的前项和为.

(1),求的通项公式;

(2).

【答案】(1);(2)21或.

【解析】试题分析:(1)设等差数列公差为,等比数列公比为,由已知条件求出,再写出通项公式;(2)由,求出的值,再求出的值,求出

试题解析:设等差数列公差为,等比数列公比为,即.

(1)∵,结合

.

(2)∵,解得或3,

时,,此时

时,,此时.

型】解答
束】
20

【题目】如图,已知直线与抛物线相交于两点 且点的坐标为.

1的值

2为抛物线的焦点 为抛物线上任一点的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设y=f″(x)是y=f′(x)的导数.某同学经过探究发现,任意一个三次函数f(x)=ax3+bx2+cx+d(a≠0)都有对称中心(x0 , f(x0)),其中x0满足f″(x0)=0.已知f(x)= x3 x2+3x﹣ ,则f( )+f( )+f( )+…+f( )=(
A.2013
B.2014
C.2015
D.2016

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a∈R,函数f(x)=ln(x+a)﹣x,曲线y=f(x)与x轴相切. (Ⅰ)求f(x)的单调区间;
(Ⅱ)是否存在实数m使得 恒成立?若存在,求实数m的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案