精英家教网 > 高中数学 > 题目详情
12.设集合M={x|x>1,x∈R},N={y|y=2x2,x∈R},P={(x,y)|y=x-1,x∈R,y∈R},则(∁RM)∩N={x|0≤x≤1},M∩P=∅.

分析 根据集合的基本运算进行求解即可.

解答 解:N={y|y=2x2,x∈R}={y|y≥0},
则∁RM={x|x≤1},
则(∁RM)∩N={x|0≤x≤1},
M∩P=∅,
故答案为:{x|0≤x≤1},∅

点评 本题主要考查集合的基本运算,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.求函数f(x)=$\sqrt{{x}^{2}+4}$+$\sqrt{{x}^{2}-10x+34}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.填空:x2+x+$\frac{1}{{x}^{2}}$+$\frac{1}{x}$-4=($\frac{1}{x}$+x+3)($\frac{1}{x}$+x-2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设不等式2-x≥0的解集为A,集合B={x|x<a,a∈R},若B?A,则实数a的取值范围为a≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知集合A={x|-2<x<4},B={x|x-a<0},若A?B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.综合应用抛物线和双曲线的光学性质,可以设计制造反射式天文望远镜,这种望远镜的特点是,镜筒可以很短而观察天体运动又很清楚.例如,某天文仪器厂设计制造的一种镜筒直径为0.6m,长为2m的反射式望远镜,其光学系统的原理如图(中心截口示意图)所示.其中,一个反射镜PO1Q弧所在的曲线为抛物线,另一个反射镜MO2N弧所在的曲线为双曲线的一个分支.已知F1,F2是双曲线的两个焦点,其中F2同时又是抛物线的焦点,试根据图示尺寸(单位:mm),分别求抛物线和双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设f(θ)=$\frac{{2cos}^{2}θ{+sin}^{2}(2π-θ)+cos(-θ)-3}{2{+2cos}^{2}(π+θ)+cos(2π-θ)}$,求f($\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}是等差数列,且满足等式n•2n-1=a1${C}_{n}^{1}$+a2${C}_{n}^{2}$+…+an${C}_{n}^{n}$(n∈N*),试求出这个等差数列的通项an

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在正四面体ABCD(各条棱相等)中,BC所在直线与AD所在直线所成角是90°.

查看答案和解析>>

同步练习册答案