分析 (Ⅰ)先求出函数f(x)的导数,解关于导函数的不等式,求出函数的单调区间即可;
(Ⅱ)先求出函数f(x)在(-∞,0]上的单调区间,求出区间上的最大值和最小值,从而证明不等式成立;
(Ⅲ)由函数的单调性得到$\frac{{a}^{2}}{{e}^{n}}≤\frac{4}{{n}^{2}}<\frac{4}{(n-1)n}$,n=2,3,…,n+1,求和化简整理即可.
解答 解:(Ⅰ)f′(x)=x(x+2)ex,
令f′(x)=x(x+2)ex=0,则x1=-2,x2=0,
所以函数f(x)的单调递减区间为(-2,0),单调递增区间为(-∞,-2),(0,+∞);
(Ⅱ)证明:由(Ⅰ)知f(x)的单调递增区间为(-∞,-2),单调递减区间为(-2,0),
x | (-∞,-2) | -2 | (-2,0) | 0 | (0,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | ↗ | 极大 | ↘ | 极小 | ↗ |
点评 本题考查了函数的单调性、最值问题,考查导数的应用,不等式的证明问题,本题计算量大,有较大难度.
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{8}$ | B. | $\frac{3}{4}$ | C. | $\frac{7}{8}$ | D. | $\frac{8}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
60分以下 | 61-70分 | 71-80分 | 81-90分 | 91-100分 | |
甲班(人数) | 3 | 6 | 11 | 18 | |
12乙班(人数) | 7 | 13 | 10 | 10 | 10 |
优秀人数 | 非优秀人数 | 合计 | |
甲班 | |||
乙班 | |||
合计 |
P(x2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.028 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | f(ln2015)<2015f(0) | |
B. | f(ln2015)=2015f(0) | |
C. | f(ln2015)>2015f(0) | |
D. | f(ln2015)与2015f(0)的大小关系不确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com