【题目】已知函数f(x)=lg(x2+ax﹣a﹣1),给出下列命题:
①函数f(x)有最小值;
②当a=0时,函数f(x)的值域为R;
③若函数f(x)在区间(﹣∞,2]上单调递减,则实数a的取值范围是a≤﹣4.
其中正确的命题是 .
【答案】②
【解析】解:∵函数f(x)=lg(x2+ax﹣a﹣1)(a∈R),
∴①如果x2+ax﹣a﹣1<0有解,
则函数f(x)=lg(x2+ax﹣a﹣1)(a∈R),的值域为R,无最小值,故①不正确,②当a=0时,函数f(x)=lg(x2﹣1)(a∈R),定义域为(﹣∞,﹣1)∪(1,+∞),值域为R,
故②正确.③若f(x)在区间[2,+∞)上是增函数,则 解得:a>﹣3,
故③不正确,
所以答案是:②
【考点精析】解答此题的关键在于理解对数函数的单调性与特殊点的相关知识,掌握过定点(1,0),即x=1时,y=0;a>1时在(0,+∞)上是增函数;0>a>1时在(0,+∞)上是减函数,以及对对数函数的单调区间的理解,了解a变化对图象的影响:在第一象限内,a越大图象越靠低;在第四象限内,a越大图象越靠高.
科目:高中数学 来源: 题型:
【题目】下列四个结论中:
(1)如果两个函数都是增函数,那么这两个函数的积运算所得函数为增函数;
(2)奇函数f(x)在[0,+∞)上是增函数,则f(x)在R上为增函数;
(3)既是奇函数又是偶函数的函数只有一个;
(4)若函数f(x)的最小值是a,最大值是b,则f(x)值域为[a,b].
其中正确结论的序号为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在汶川大地震后对唐家山堰塞湖的抢险过程中,武警官兵准备用射击的方法引爆从湖坝上游漂流而下的一个巨大的汽油罐.已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆.每次射击是相互独立的,且命中的概率都是.
(1)求油罐被引爆的概率;
(2)如果引爆或子弹打光则停止射击,设射击次数为,求的分布列及.( 结果用分数表示)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义域为R的奇函数y=f(x)的导函数为y=f′(x),当x≠0时, >0,若a=f(1),b=﹣2f(﹣2),c=(ln )f(ln ),则a,b,c的大小关系正确的是( )
A.a<c<b
B.b<c<a
C.a<b<c
D.c<a<b
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com