精英家教网 > 高中数学 > 题目详情

已知函数f(x)=xex-ax-1,则关于f(x)的零点叙述正确的是


  1. A.
    当a=0时,函数f(x)有两个零点
  2. B.
    函数f(x)必有一个零点是正数
  3. C.
    当a<0时,函数f(x)有两个零点
  4. D.
    当a>0时,函数f(x)有一个零点
B
分析:由已知中函数f(x)=xex-ax-1,我们令a=0,可以求出f′(x),我们可以确定函数的单调性,再根据f(0)=-1,进而即可得到函数f(x)有两个零点,进而得到答案.
解答:∵f(x)=xex-ax-1,
∴f′(x)=xex+ex-a
若a=0,则f′(x)=xex+ex
令f′(x)=0则x=-1
∵x>-1,f′(x)>0
x<-1,f′(x)<0
所以函数在(-1,+∞)上是增函数,在(-∞,-1)上是减函数,
又f(0)=-1,故函数f(x)在(0,+∞)有一个零点,在(-∞,0)上没有零点,
函数有一个正零点;
又当a≠0时,a<0,有且只有一正零点,a>0两个零点且一正一负两个零点.
故选B.
点评:本题考查的知识点是函数零点的判定定理,其中根据函数的解析式,求出导函数的解析式,进而确定函数的单调性,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案