精英家教网 > 高中数学 > 题目详情
20.已知某几何体的三视图如图所示,其中俯视图中的曲线是一段半圆弧,则这个几何体的表面积是12+π.

分析 由已知中的三视图,可得该几何体是一个以俯视图为底面的柱体,计算各个面的面积,相加可得答案.

解答 解:由已知中的三视图,可得该几何体是一个以俯视图为底面的柱体,
这是一个四棱柱挖去一个半圆柱所得几何体,
底面面积为:1×2-$\frac{1}{2}$π=2-$\frac{1}{2}$π,
底面周长为:1+2+1+π=4+π,
高为2,
故这个几何体的表面积是S=(4+π)×2+2×(2-$\frac{1}{2}$π)=12+π,
故答案为:12+π

点评 本题考查的知识点是棱柱的体积表面积,半圆柱的体积和表面积,简单几何体的三视图,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设F1、F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,过点F2的直线交双曲线右支于A、B两点.若AF2⊥AF1,且|BF2|=2|AF1|,则双曲线的离心率为(  )
A.$\frac{\sqrt{17}}{3}$B.$\frac{\sqrt{10}}{2}$C.$\sqrt{13}$D.$\frac{\sqrt{58}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知命题p:?x0∈R,lnx0≥x0-1.命题q:?θ∈R,sinθ+cosθ>-1.则下列命题中为真命题的是(  )
A.p∧(?q)B.(?p)∨qC.(?p)∧(?q)D.p∧q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.抛物线C:y2=2px(p>0)的准线为l,焦点为F,圆M的圆心在x轴的正半轴上,圆M与y轴相切,过原点O作倾斜角为$\frac{π}{3}$的直线m,交直线l于点A,交圆M于不同的两点O、B,且|AO|=|BO|=2,若P为抛物线C上的动点,则$\overrightarrow{PM}•\overrightarrow{PF}$的最小值为(  )
A.-2B.2C.$\frac{7}{4}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=a(x-1)2+lnx,a∈R.
(Ⅰ)当$a=-\frac{1}{4}$时,求函数y=f(x)的单调减区间;
(Ⅱ)$a=\frac{1}{2}$时,令$h(x)=f(x)-3lnx+x-\frac{1}{2}$.求h(x)在[1,e]上的最大值和最小值;
(Ⅲ)若a≤0时,求证:函数f(x)≤x-1在x∈[1,+∞)恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知数列{an}的通项公式an=n2-2n-8(n∈N*),则a4等于(  )
A.1B.2C.0D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=x3+3x对任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,则x∈(-2,$\frac{2}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知0<α<$\frac{π}{2}$,cos(2π-α)-sin(π-α)=-$\frac{\sqrt{5}}{5}$
(1)求sinα+cosα的值;
(2)求$\frac{{{{cos}^2}(\frac{3π}{2}+α)+2cosαcos(\frac{π}{2}-α)}}{{1+{{sin}^2}(\frac{π}{2}-α)}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知幂函数f(x)=x${\;}^{-{m}^{2}+2m+3}$(m∈Z)为偶函数,且在区间(0,+∞)上是单调增函数.
(1)求函数f(x)的解析式;
(2)设函数g(x)=$\sqrt{f(x)}$+2x+c,若g(x)>2对任意的x∈R恒成立,求实数c的取值范围.

查看答案和解析>>

同步练习册答案