精英家教网 > 高中数学 > 题目详情

【题目】矩形纸片ABCD中,AB10cm,BC8cm.将其按图(1)的方法分割,并按图(2)的方法焊接成扇形;按图(3)的方法将宽BC 等分,把图(3)中的每个小矩形按图(1)分割并把4个小扇形焊接成一个大扇形;按图(4)的方法将宽BC 等分,把图(4)中的每个小矩形按图(1)分割并把6个小扇形焊接成一个大扇形;……;依次将宽BC 等分,每个小矩形按图(1)分割并把个小扇形焊接成一个大扇形.当n时,最后拼成的大扇形的圆心角的大小为 ( )

A. 小于 B. 等于 C. 大于 D. 大于

【答案】C

【解析】 时,扇形的半径为10,弧长无限接近于8+8=16,则圆心角为 ,所以最后拼成的大扇形的圆心角的大小大于 ,选C.

点睛: 本题主要考查了扇形弧长计算公式, 属于中档题. 本题关键是当 时,用极端值来计算弧长.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某四棱锥的三视图如图所示,该四棱锥外接球的体积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知左、右焦点分别为的椭圆与直线相交于两点,使得四边形为面积等于的矩形.

1求椭圆的方程;

2过椭圆上一动点(不在轴上)作圆的两条切线,切点分别为,直线与椭圆交于两点, 为坐标原点,求的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知变量 满足约束条件 ,若目标函数 仅在点(5,3)处取得最小值,则实数的取值范围为_______________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知甲、乙两个容器,甲容器容量为满纯酒精,乙容器容量为,其中装有体积为的水(:单位: ).现将甲容器中的液体倒人乙容器中,直至甲容器中液体倒完或乙容器盛满,搅拌使乙容器中两种液体充分混合,再将乙容器中的液体倒人甲容器中直至倒满,搅拌使甲容器中液体充分混合,如此称为一次操作,假设操作过程中溶液体积变化忽略不计.设经过次操作之后,乙容器中含有纯酒精单位: ),下列关于数列的说法正确的是( )

A. 时,数列有最大值

B. ,则数列为递减数列

C. 对任意的,始终有

D. 对任意的,都有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足 ,其中.

(1)设,求证:数列是等差数列,并求出的通项公式;

(2)设,数列的前项和为,是否存在正整数,使得对于恒成立,若存在,求出的最小值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,设动点.

(1)当时,若过点的直线与圆相切,求直线的方程;

(2)当时,求以为直径且被直线截得的弦长为2的圆的方程;

(3)当时,设,过点的垂线,与以为直径的圆交于点,垂足为,试问:线段的长是否为定值?若为定值,求出这个定值;若不为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)若函数是奇函数,求实数的值;

(2)若对任意的实数,函数为实常数)的图象与函数的图象总相切于一个定点.

① 求的值;

② 对上的任意实数,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面平面是等边三角形,已知

(1)设上的一点,证明:平面平面

(2)求四棱锥的体积.

查看答案和解析>>

同步练习册答案