精英家教网 > 高中数学 > 题目详情
8、如图,正方体ABCD-A1B1C1D1中,E、F分别是AA1,C1D1的中点,G是正方形BCC1B1的中心,则空间四边形AEFG在该正方体各面上的投影不可能是(  )
分析:根据平行投影的性质,逐个验证光线从不同的面向正方体照射,可以得到不同的结果,分别从三个不同的方向,得到三种不同的结果,只有B答案不能形成.
解答:解:光线由上向下照射可以得到A的投影,
光线有面ABB1A1照射,可以得到C的投影,
光线由下向上照射可以得到D的投影,
故选B.
点评:本题考查平行投影及平行投影作图法,是一个常见的题目,这种题目不用运算,但是它考查我们的空间想象能力,在一个本题告诉我们物体从不同角度观察结果不同,为三视图做准备.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1的棱长为a,它的各个顶点都在球O的球面上,问球O的表面积.
(1) 如果球O和这个正方体的六个面都相切,则有S=
 

(2)如果球O和这个正方体的各条棱都相切,则有S=
 

精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,E,F分别为BB1和A1D1的中点.证明:向量
A1B
B1C
EF
是共面向量.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1棱长为8,E、F分别为AD1,CD1中点,G、H分别为棱DA,DC上动点,且EH⊥FG.
(1)求GH长的取值范围;
(2)当GH取得最小值时,求证:EH与FG共面;并求出此时EH与FG的交点P到直线B1B的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,若E、F、G分别为棱BC、C1C、B1C1的中点,O1、O2分别为四边形ADD1A1、A1B1C1D1的中心,则下列各组中的四个点不在同一个平面上的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,正方体ABCD-A1B1C1D1中,E、F、G、H分别是所在棱的三等分点,且BF=DE=C1G=C1H=
13
AB

(1)证明:直线EH与FG共面;
(2)若正方体的棱长为3,求几何体GHC1-EFC的体积.

查看答案和解析>>

同步练习册答案