精英家教网 > 高中数学 > 题目详情
如图,在五面体ABCDEF中,四边形ABCD是矩形,AB∥EF,AB=2EF=2,AE=AD=1,∠EAB=90°,平面ABFE⊥平面ABCD
(Ⅰ)若G为DF的中点,求BG的长,
(Ⅱ)若H是DC的中点,求二面角A-HF-B的余弦值.
考点:平面与平面垂直的判定,二面角的平面角及求法
专题:空间位置关系与距离
分析:(Ⅰ)由已知可求BF,ED,DF,DB,FG,DF的值,可知DB2=BF2+DF2,由勾股定理可知DF⊥BF,从而可求BG的值.
(Ⅱ)由已知可求得△AHF,△BFH都是正三角形,取FH的中点M,连接AM,BM,可得AM⊥FH,BM⊥FH,∠AMB即为二面角A-HF-B,分别求出AB,AM,BM的值,从而由余弦定理可求二面角A-HF-B的余弦值.
解答: 解:(Ⅰ)∵四边形ABCD是矩形,AB∥EF,AB=2EF=2,AE=AD=1,∠EAB=90°,平面ABFE⊥平面ABCD,G为DF的中点,
∴BF=
2
,ED=
2
,DF=
EF2+ED2
=
3
,DB=
AD2+AB2
=
5
,FG=
1
2
,DF=
3
2

∴DB2=BF2+DF2
∴由勾股定理可知DF⊥BF
∴BG=
BF2+FG2
=
2+
3
4
=
11
2



(Ⅱ)∵四边形ABCD是矩形,AB∥EF,AB=2EF=2,AE=AD=1,∠EAB=90°,平面ABFE⊥平面ABCD,G为DF的中点,
∴BF=
2
,BH=
2
,AH=
2
,AF=
2
,FH=
2

∴△AHF,△BFH都是正三角形
∴取FH的中点M,连接AM,BM,可得AM⊥FH,BM⊥FH,∠AMB即为二面角A-HF-B,
∵AB=2,AM=
AH2-HM2
=
2-
1
2
=
6
2
=BM
∴由余弦定理知,cos∠AMB=
AM2+BM2-AB2
2×AM×BM
=
6
4
+
6
4
-4
6
2
×
6
2
=-
1
3

故二面角A-HF-B的余弦值是-
1
3
点评:本题主要考查了平面与平面垂直的判定,二面角的平面角及求法,其中正确作出二面角是解题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

只是2问,用空间向量啊!以c为坐标原点哦!
如图,在四面体A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2
2
.M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.
(1)证明:PQ∥平面BCD;
(2)若二面角C-BM-D的大小为60°,求∠BDC的大小.
(用空间向量解答,以C为坐标原点)

查看答案和解析>>

科目:高中数学 来源: 题型:

在平行四边形ABCD中,AC=
3
BD,则∠DAB的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y∈R+,且2x+8y-xy=0,当x,y为何值时,x+y取得最小值,并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程8x2+6kx+2k+1=0的两个实根是sinθ和cosθ.
(1)求k的值;
(2)求tanθ的值(其中sinθ>cosθ).

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=2sin(x+
A
2
)cos(x+
A
2
)+2
3
cos2(x+
A
2
)的增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={(x,y)|
2x+y≤4
4x-y≥-1
x≥0
y≥0
},点P(x1,y1),Q(x2,y2)且(x1,y1)∈A,(x2,y2)∈A,
a
=(1,-1),则
a
PQ
的最大值为(  )
A、5
B、4
C、3
D、
9
2

查看答案和解析>>

科目:高中数学 来源: 题型:

正方体的面对角线长是x,其对角线的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y=
1
8
x2与双曲线
y2
a2
-x2=1(a>0)有共同的焦点F,O为坐标原点,P在x轴上方且在双曲线上,则
OP
FP
的最小值为(  )
A、2
3
-3
B、3-2
3
C、
7
4
D、
3
4

查看答案和解析>>

同步练习册答案