精英家教网 > 高中数学 > 题目详情

【题目】已知数列是公差的等差数列,且

1)求的前项的和

2)若,问在数列中是否存在一项是正整数),使得成等比数列,若存在,求出的值,若不存在,请说明理由;

3)若存在自然数是正整数),满足,使得成等比数列,求所有整数的值.

【答案】1542)存在,3,或1

【解析】

1)利用等差数列的前项和公式及其性质,即可得出结果.

2)由,且.可得,可得.假设存在一项是正整数),使得成等比数列,可得,解出即可得出.

3)由题意可得:.公差.可得,化为:,求解,再进行分类讨论,即可得出结果.

解:(1)由题意,.

2)由,且.可得,解得,可得.

假设存在一项是正整数),使得成等比数列,

,解得

∴存在一项,使得成等比数列.

3)由题意可得:

公差

化为:

解得,或

∴当时,,满足题意.

时.化为,即

解得1

综上可得:1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,过坐标原点作两条互相垂直的射线与椭圆分别交于两点.

1)证明:当取得最小值时,椭圆的离心率为.

2)若椭圆的焦距为2,是否存在定圆与直线总相切?若存在,求定圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列的公比,且的等差中项.

1)求数列的通项公式;

2)试比较的大小,并说明理由;

3)若数列满足,在每两个之间都插入2,使得数列变成了一个新的数列,试问:是否存在正整数,使得数列的前项和?如果存在,求出的值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】黄冈一票通景区旅游年卡,是由黄冈市旅游局策划,黄冈市大别山旅游公司推出的一项惠民工程.持有旅游年卡一年内可不限次畅游全市19家签约景区.为合理配置旅游资源,现对已游览某签约景区的游客进行满意度调查.随机抽取100位游客进行调查评分(满分100分),评分的频率分布直方图如图.

1)求a的值并估计评分的平均数;

2)为了了解游客心声,调研机构用分层抽样的方法从评分为的游客中抽取了6名,听取他们对该景区建设的建议.现从这6名游客中选取2人,求这2人中至少有一个人的评分在内的概率;

3)为更广泛了解游客想法,调研机构对所有评分从低到高排序的前86%游客进行了网上问卷调查并随调查表赠送小礼品,估计收到问卷调查表的游客的最高分数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数定义已知偶函数的定义域为时,

1)求并求出函数的解析式;

2)若存在实数使得函数上的值域为,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体中,PQ分别是棱的中点.

1)求异面直线所成角的大小;

2)求以PQ四点为四个顶点的四面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列判断正确的是(

A.若随机变量服从正态分布,则

B.已知直线平面,直线平面,则“”是“”的充分不必要条件;

C.若随机变量服从二项分布:,

D.的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若同时满足以下条件:

在D上单调递减或单调递增;

存在区间,使 上的值域是,那么称为闭函数.

(1)求闭函数符合条件的区间

(2)判断函数是不是闭函数?若是请找出区间;若不是请说明理由;

(3)若是闭函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】王老师是高三的班主任,为了在寒假更好的督促班上的学生完成学习作业,王老师特地组建了一个QQ群,群的成员由学生、家长、老师共同组成.已知该QQ群中男学生人数多于女学生人数,女学生人数多于家长人数,家长人数多于教师人数,教师人数的两倍多于男学生人数.则该QQ群人数的最小值为(

A.20B.22C.26D.28

查看答案和解析>>

同步练习册答案