精英家教网 > 高中数学 > 题目详情
15.已知向量$\overrightarrow a$,$\overrightarrow b$满足条件:$|{\overrightarrow a}|=2$,$|{\overrightarrow b}|=\sqrt{2}$,且$\overrightarrow a$与$2\overrightarrow b-\overrightarrow a$互相垂直,则$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{π}{4}$.

分析 根据两向量垂直,数量积为0,利用数量积的定义列出方程求出$\overrightarrow{a}$、$\overrightarrow{b}$夹角的大小.

解答 解:向量$\overrightarrow a$,$\overrightarrow b$满足条件:$|{\overrightarrow a}|=2$,$|{\overrightarrow b}|=\sqrt{2}$,且$\overrightarrow a$与$2\overrightarrow b-\overrightarrow a$互相垂直,
∴$\overrightarrow{a}$•(2$\overrightarrow{b}$-$\overrightarrow{a}$)=2$\overrightarrow{a}$•$\overrightarrow{b}$-${\overrightarrow{a}}^{2}$=0,
设$\overrightarrow{a}$、$\overrightarrow{b}$的夹角为θ,
则2×|$\overrightarrow{a}$|×|$\overrightarrow{b}$|×cosθ-${|\overrightarrow{a}|}^{2}$=2×2×$\sqrt{2}$×cosθ-22=0,
解得cosθ=$\frac{\sqrt{2}}{2}$,
又θ∈[0,π],
∴θ=$\frac{π}{4}$.
故答案为:$\frac{π}{4}$.

点评 本题主要考查了两个向量垂直的性质以及夹角公式的应用问题,属于综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.在△ABC中,角A,B,C的对边分别为a,b,c,满足(2b-c)cos A-acos C=0.
(1)求角A的大小;
(2)若a=$\sqrt{3}$,试求当△ABC的面积取最大值时,△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合M={0,1,2,3,4},N={1,3,5}且P=M∪N,则P的元素有(  )个.
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.对任意x∈R,函数y=(k2-k-2)x2-(k-2)x-1的图象始终在x轴下方,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)求以椭圆$\frac{x^2}{8}+\frac{y^2}{5}=1$的焦点为顶点,以椭圆的顶点为焦点的双曲线方程
(2)求此双曲线方程的实半轴长,虚半轴长,离心率,渐近线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.$\lim_{n→∞}[{\frac{1}{3}+\frac{1}{8}+…+\frac{1}{{n({n+2})}}}]$=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费xi和年销售量yi(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.

$\overline x$$\overline y$$\overline w$${\sum_{i=1}^8{({x_i}-\overline x)}^2}$${\sum_{i=1}^8{({w_i}-\overline w)}^2}$$\sum_{i=1}^8{({x_i}-\overline x)}({y_i}-\overline y)$$\sum_{i=1}^8{({w_i}-\overline w)}({y_i}-\overline y)$
46.656.36.8289.81.61469108.8
表中wi=$\sqrt{x_i}$,$\overline w=\frac{1}{8}\sum_{i=1}^8{w_i}$
(1)若根据散点图用y=c+d$\sqrt{x}$表示年销售量y关于年宣传费x的回归方程,试根据表中数据,求c,d的值;
(2)已知这种产品的年利率z与x、y的关系为z=0.2y-x,根据(1)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?
(ii)年宣传费x为何值时,年利润的预报值最大?
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为:β=$\frac{{\sum_{i=1}^n{({v_i}-\overline v)({u_i}-\overline u)}}}{{\sum_{i=1}^n{{{({u_i}-\overline u)}^2}}}}$α=$\overline v-β\overline u$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知平面内有A(-2,1),B(1,4),使$\overrightarrow{AC}$=$\frac{1}{2}$$\overrightarrow{CB}$成立的点C坐标为(-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某几何体由圆柱挖掉半个球和一个圆锥所得,三视图中的正视图和侧视图如图所示,求该几何体的表面积(  )
A.60πB.75πC.90πD.93π

查看答案和解析>>

同步练习册答案