精英家教网 > 高中数学 > 题目详情
函数y=sin(2x+
π
4
),x∈[0,π]的递减区间是(  )
A、[0,
π
2
]
B、[
π
2
,π]
C、[
π
8
8
]
D、[0,
π
8
]
考点:正弦函数的单调性
专题:三角函数的图像与性质
分析:首先利用正弦型函数的定义域求出函数整体定义域,进一步确定函数的单调区间.
解答: 解:由于0≤x≤π,
所以:
π
4
≤2x+
π
4
4

π
2
≤2x+
π
4
2
时,函数为单调递减函数.
解得:
π
8
≤x≤
8

故选:C.
点评:本题考查的知识要点:正弦型函数单调性的应用,属于基础题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

是否存在m,使得三条直线3x-y+2=0,2x+y+3=0,mx+y=0能够构成三角形?若存在,请求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=3cos(ωx+φ),对任意实数x,都有f(-x+
π
3
)=f(x+
π
3
),那么f(
π
3
)=(  )
A、-3B、0C、3D、±3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(2x2+a•2x+1=0有根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在平面直角坐标系xOy中,已知⊙C:x2+y2-6x+5=0,点A、B在⊙C上,且AB=2
3
,则|
OA
+
OB
|的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足f(x+2)=
1
2
f(x),当x∈[0,2)时,f(x)=
1
2
-2x2, 0≤x<1
21- | x -  
3
2
 |
,  1≤x<2.
函数g(x)=x3+3x2+m.若?s∈[-4,2),?t∈[-4,-2),不等式f(s)-g(t)≥0成立,则实数m的取值范围是(  )
A、(-∞,-12]
B、(-∞,-4]
C、(-∞,8]
D、(-∞,
31
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且an+Sn=1(n∈N*).
(1)求{an}的通项公式;
(2)若数列{bn}满足b1=1,且bn+1=bn+an,求{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个三棱柱的侧视图、俯视图如图所示,则三棱柱的表面积是(  )
A、16+6
2
B、16+6
3
C、12+6
2
D、14+6
3

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=3sin(ωx+
π
6
)(ω≠0)的最小正周期是π,则ω=
 

查看答案和解析>>

同步练习册答案