精英家教网 > 高中数学 > 题目详情
在数列{an}中,前n项和Sn满足2Sn=(n+2)an-1.
(1)求数列{an}的通项公式;
(2)求Tn=
1
a1a3
+
1
a2a4
+…+
1
anan+2
的值.
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由2Sn=(n+2)an-1求出首项,取n=n-1得另一递推式,作差后可得
an
an-1
=
n+1
n
(n≥2),然后利用累积法求数列的通项公式;
(2)把数列{an}的通项公式代入
1
anan+2
,整理后利用裂项相消法求Tn=
1
a1a3
+
1
a2a4
+…+
1
anan+2
的值.
解答: 解:(1)由2Sn=(n+2)an-1,得2S1=2a1=(1+2)a1-1,即a1=1;
当n≥2时,有2Sn-1=(n-1+2)an-1-1,
∴2an=(n+2)an-(n+1)an-1,即
an
an-1
=
n+1
n
(n≥2),
an=
an
an-1
an-1
an-2
a2
a1
a1
=
n+1
n
n
n-1
3
2
•1
=
n+1
2
(n≥2).
n=1时上式成立,
an=
n+1
2

(2)
1
anan+2
=
1
n+1
2
n+3
2
=
4
(n+1)(n+3)
=2(
1
n+1
-
1
n+3
)

∴Tn=
1
a1a3
+
1
a2a4
+…+
1
anan+2
=2[(
1
2
-
1
4
)+(
1
3
-
1
5
)+(
1
4
-
1
6
)+…+(
1
n+1
-
1
n+3
)]

=2(
1
2
+
1
3
-
1
n+2
-
1
n+3
)
=
5n2+15n+5
3(n+2)(n+3)
点评:本题考查了数列递推式,考查了利用累积法求数列的通项公式,训练了裂项相消法求数列的和,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线m、n和平面α,则m∥n的必要非充分条件是(  )
A、m、n与α成等角
B、m⊥α且n⊥α
C、m∥α且n?α
D、m∥α且n∥α

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-2x+lnx+1.
(1)若函数f(x)在其定义域内为单调递增,求实数a的取值范围;
(2)设g(x)=mx2+4mx+3,当a=1时,不等式f(x1)≤g(x2),x1∈(0,1],x2∈(-∞,+∞)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某班级有6名同学去报名参加校学生会的4项社团活动,若甲、乙两位同学不参加同一社团,每个社团都有人参加,每人只参加一个社团,则不同的报名方案数为(  )
A、4320B、2400
C、2160D、1320

查看答案和解析>>

科目:高中数学 来源: 题型:

春节过后购物旺季随之转向淡季,商家均采用各种促销方法促销,某商场规定:凡购物均可获得一次抽奖机会,抽奖方法为:从编号1-6的相同小球中任意抽取一个小球记下编号后放回,若抽到编号为6的小球则再获一次机会,最多抽取二次.
(1)求顾客恰有两次抽奖机会的概率;
(2)若抽得小球编号之和大于10为中奖,求中奖概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某几何体的三视图如图所示,三个视图都为直角三角形,其中主视图是以2为直角边的等腰直角三角形,则该几何体的外接球的表面积为(  )
A、16πB、9πC、8πD、4π

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点(1,
3
2
),它的左焦点为F(-c,0),直线l1:y=x-c与椭圆C将于A,B两点,△ABF的周长为a3
(Ⅰ)求椭圆C的方程;
(Ⅱ)若点P是直线l2:y=x-3c上的一个动点,经过点P作椭圆C的两条切线PM,PN,M,N分别为切点,求证:直线MN过定点,并求出此定点坐标.
(注:经过椭圆:
x2
a2
+
y2
b2
=1(a>b>0)上一点(x0,y0)的椭圆的切线方程为
x0x
a2
+
y0y
b2
=1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(3-a)x-3(x≤7)
ax-6(x>7)
若数列{an}满足an=f(n)(n∈N+),且{an}是递增数列,则实数a的取值范围是(  )
A、[
9
4
,3)
B、(
9
4
,3)
C、(2,3)
D、(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

设F为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦点,若双曲线与渐近线在第一象限分别存在点PQ.使得P为QF的中点,则双曲线离心率的取值范围为(  )
A、(1,2)
B、(2,+∞
C、(1,
2
D、(
2
,+∞)

查看答案和解析>>

同步练习册答案