在边长是2的正方体-中,分别为
的中点. 应用空间向量方法求解下列问题.
(1)求EF的长
(2)证明:平面;
(3)证明: 平面.
科目:高中数学 来源: 题型:解答题
如图,四棱锥的底面为一直角梯形,侧面PAD是等边三角形,其中,,平面底面,是的中点.
(1)求证://平面;
(2)求与平面BDE所成角的余弦值;
(3)线段PC上是否存在一点M,使得AM⊥平面PBD,如果存在,求出PM的长度;如果不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知四棱锥P-ABCD的底面ABCD是边长为1的正方形,PD⊥底面ABCD,PD="AD."
(Ⅰ)求证:BC∥平面PAD;
(Ⅱ)若E、F分别为PB,AD的中点,求证:EF⊥BC;
(Ⅲ)求二面角C-PA-D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在直三棱柱ABC-A1B1C1中,底面△ABC为等腰直角三角形,∠B = 900,D为棱BB1上一点,且面DA1 C⊥面AA1C1C.求证:D为棱BB1中点;(2)为何值时,二面角A -A1D - C的平面角为600.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,三棱柱ABC-A1B1C1中,BC⊥侧面AA1C1C,AC=BC=1,CC1=2, ∠CAA1= ,D、E分别为AA1、A1C的中点.
(1)求证:A1C⊥平面ABC;(2)求平面BDE与平面ABC所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)
如图,边长为2的正方形ACDE所在的平面与平面ABC垂直,AD与CE的交点为M,,且AC=BC.
(1)求证:平面EBC;w.w.zxxk.c.o
(2求二面角的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com