精英家教网 > 高中数学 > 题目详情

【题目】已知圆为坐标原点,动点在圆外,过点分别作圆的切线,切点分别为.

1)若点在点位置时,求此时切线的方程;

2)若点满足,问直线上是否存在点,使得?如果存在,求出点的坐标;若不存在,说明理由.

【答案】1.2)不存在.见解析

【解析】

1)根据过点的直线是否存在斜率进行分类讨论,结合点到直线距离公式,结合圆的切线性质进行求解即可;

2)设,计算出的表达式,结合,求出点轨迹方程,也就求出点的轨迹方程,求出直线上点,到距离最小时点的坐标,设该点的为,根据当分别是圆的两条切线时,是所有中最大的角进行求解即可.

1)把圆的方程化为标准方程为

所以圆心为,半径.

的斜率不存在时,

此时的方程为的距离,满足条件.

的斜率存在时,设斜率为

的方程为,即.

,解得.

所以的方程为,即.

综上,满足条件的切线的方程为.

2)点不存在,理由如下:

因为

所以.

整理,得.

即点是以圆心为,半径的圆上两动点,

因为直线上点是直线上所有点中到圆心距离最小的点,

分别是圆的两条切线时,

是所有中最大的角,

因为

所以

此时,,故不存在.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点为双曲线的左、右焦点,过作垂直于轴的直线,在轴上方交双曲线于点,且,圆的方程是.

1)求双曲线的方程;

2)过双曲线上任意一点作该双曲线两条渐近线的垂线,垂足分别为,求的值;

3)过圆上任意一点作圆的切线交双曲线两点,中点为,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋子中有大小、形状完全相同的四个小球,分别写有“和”、“谐”、“校”、“园”四个字,有放回地从中任意摸出一个小球,直到“和”、“谐”两个字都摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率。利用电脑随机产生之间取整数值的随机数,分别用代表“和”、“谐”、“校”、“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下组随机数:

由此可以估计,恰好第三次就停止摸球的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°AB=2PD=OACBD的交点,E为棱PB上一点.

1)证明:平面EAC⊥平面PBD

2)若PD∥平面EAC,求三棱锥P-EAD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公比为正数的等比数列,首项,前n项和为,且成等差数列.

(Ⅰ)求数列的通项公式;

(Ⅱ)设,求数列的前n项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,其前n项和,则下列说法正确的个数是(

①数列是等差数列;②;③.

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数ab为常数),

1)当时,求函数的单调区间;

2)在(1)的条件下,有两个不相等的实根,求b的取值范围;

3)若对任意的,不等式上恒成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求的单调区间;

(2)若函数存在唯一的零点,且,则的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项等比数列,等差数列满足,且的等比中项.

(1)求数列的通项公式;

(2)设,求数列的前项和.

查看答案和解析>>

同步练习册答案