精英家教网 > 高中数学 > 题目详情
5.过三个点A(1,3),B(4,2),C(1,-1)的圆交y轴于M,N两点,则|MN|=(  )
A.2$\sqrt{6}$B.3$\sqrt{6}$C.2D.5$\sqrt{6}$

分析 设圆的方程为x2+y2+Dx+Ey+F=0,代入点的坐标,求出D,E,F,令x=0,即可得出结论.

解答 解:设圆的方程为x2+y2+Dx+Ey+F=0,则$\left\{\begin{array}{l}{1+9+D+3E+F=0}\\{16+4+4D+2E+F=0}\\{1+1+D-E+F=0}\end{array}\right.$,
∴D=-4,E=-2,F=0,
∴x2+y2-4x-2y=0,
令x=0,可得y2-2y=0,
∴y=0或2,
∴|MN|=2.
故选C.

点评 本题考查圆的方程,考查学生的计算能力,确定圆的方程是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知曲线C的极坐标方程为ρ2=$\frac{12}{3co{s}^{2}θ+4si{n}^{2}θ}$,以极点为原点,极轴为x轴非负半轴建立平面直角坐标系,则曲线C经过伸缩变换$\left\{\begin{array}{l}{x′=\frac{1}{2}x}\\{y′=\frac{\sqrt{3}}{3}y}\end{array}\right.$后,得到的曲线是(  )
A.直线B.椭圆C.双曲线D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.气象意义上的春季进入夏季的标志为:“连续五天每天日平均温度不低于22℃”,现在甲、乙、丙三地连续五天的日平均温度的记录数据(记录数据都是正整数,单位℃):
甲地:五个数据的中位数是24,众数为22;
乙地:五个数据的中位数是27,平均数为24;
丙地:五个数据中有一个数据是30,平均数是24,方差为10.
则肯定进入夏季的地区有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.命题“对任意实数x∈[2,3],关于x的不等式x2-a≤0恒成立”为真命题的一个必要不充分条件是(  )
A.a≥9B.a≤9C.a≤8D.a≥8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知实数x,y满足约束条件$\left\{\begin{array}{l}{x-y+1≥0}\\{4x+3y-12≤0}\\{y-2≥0}\end{array}\right.$,则z=$\frac{3x-y+2}{x+1}$的最大值为(  )
A.$\frac{9}{5}$B.$\frac{3}{2}$C.$\frac{25}{16}$D.$\frac{9}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知抛物线${x^2}=-4\sqrt{5}y$的焦点与双曲线$\frac{x^2}{a}+\frac{y^2}{4}=1(a∈R)$的一个焦点重合,则该双曲线的渐近线方程为(  )
A.y=±2xB.y=±4xC.$y=±\frac{1}{4}x$D.$y=±\frac{1}{2}x$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知命题p:方程$\frac{x^2}{2m}+\frac{y^2}{12-m}=1$表示焦点在y轴上的椭圆;命题q:双曲线$\frac{y^2}{2}-\frac{x^2}{3m}=1$的离心率e∈(2,3);若p∨q为真,且p∧q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若复数z满足(1+2i)z=|2+i|,则复数z的虚部为(  )
A.$\frac{2\sqrt{5}}{5}$B.$\frac{2\sqrt{5}}{5}$iC.-$\frac{2\sqrt{5}}{5}$D.-$\frac{2\sqrt{5}}{5}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知四棱锥P-ABCD的正视图1是一个底边长为4、腰长为3的等腰三角形,图2、图53分别是四棱锥P-ABCD的侧视图和俯视图.
(1)求证:AD⊥PC;
(2)求四棱锥P-ABCD的侧面积.

查看答案和解析>>

同步练习册答案