精英家教网 > 高中数学 > 题目详情

【题目】探究函数的图像时,列表如下:

x

0.5

1

1.5

1.7

1.9

2

2.1

2.2

2.3

3

4

5

7

y

8.5

5

4.17

4.05

4.005

4

4.005

4.02

4.04

4.3

5

5.8

7.57

观察表中y值随x值的变化情况,完成以下的问题:

1)函数的递减区间是 ,递增区间是

2)若对任意的恒成立,试求实数m的取值范围.

【答案】1)递减区间是,递增区间是;(2.

【解析】

1)由表中y值随x值的变化情况可得答案;

2)由表中y值随x值的变化情况得到当时,的最小值,然后解出不等式即可.

1)由表中y值随x值的变化情况可得函数的递减区间是

递增区间是

2)由表中y值随x值的变化情况可得当时,

所以要使对任意的恒成立,只需

解得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法中正确的个数是( )

(1) 已知,则 

(2)将6个相同的小球放入4个不同的盒子中,要求不出现空盒,共有10种放法.

(3) 除后的余数为

(4) 若,则

(5)抛掷两个骰子,取其中一个的点数为点的横坐标,另一个的点数为点的纵坐标,连续抛掷这两个骰子三次,点在圆内的次数的均值为

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知由实数构成的等比数列{an}满足a1=2,a1+ a3+ a5=42.

(I)求数列{an}的通项公式;

(II)求a2+ a4+ a6+…+ a2n.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)令,试讨论的单调性;

2)若对恒成立,的取值范围.

【答案】1)见解析(2

【解析】试题分析:(1,对函数求导,研究导函数的正负得到单调性即可;(2由条件可知恒成立,变量分离,求这个函数的最值即可.

解析:

1)由

时, 恒成立,则单调递减;

时, ,令

.

综上:当时, 单调递减,无增区间;

时,

2)由条件可知恒成立,则

时, 恒成立

时,由.

,因为,所以,

所以,从而可知.

综上所述: 所求.

点睛:导数问题经常会遇见恒成立的问题:

(1)根据参变分离,转化为不含参数的函数的最值问题;

2)若 就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为 ,若恒成立

3)若 恒成立,可转化为(需在同一处取得最值) .

型】解答
束】
22

【题目】在平面直角坐标系中,曲线的参数方程为 (为参数),以为极点, 轴的非负半轴为极轴的极坐标系中,直线的极坐标方程为.

(1)求曲线的极坐标方程;

(2)设直线与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·绍兴仿真考试)已知数列{an}的奇数项依次构成公差为d1的等差数列,偶数项依次构成公差为d2的等差数列(其中d1d2为整数),且对任意nN*,都有an<an1,若a11a22,且数列{an}的前10项和S1075,则d1________a8________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB2,∠BAD60°.

(1)求证:BD⊥平面PAC

(2)PA4,求平面PBC与平面PDC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,求的最大值;

(2)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一个以A1B1C1为底面的直三棱柱被一平面所截得到的几何体,截面为ABC,已知A1B1B1C12,∠A1B1C190°AA14BB13CC12,求:

1)该几何体的体积.

2)截面ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,角ABC对应的边分别是abc,已知cos2A﹣3cosB+C=1

1)求角A的大小;

2)若△ABC的面积S=5b=5,求sinBsinC的值.

查看答案和解析>>

同步练习册答案