分析 正四棱锥P-ABCD的五个顶点在同一球面上,则其外接球的球心在它的高PO1上,记为O,如图.求出AO1,OO1,解出球的半径,求出球的表面积.
解答 解:正四棱锥P-ABCD的外接球的球心在它的高PO1上,
记为O,PO=AO=R,PO1=3,OO1=3-R,
在Rt△AO1O中,AO1=$\frac{\sqrt{2}}{2}$AC=$\sqrt{3}$,由勾股定理R2=3+(3-R)2得R=2,
∴球的表面积S=16π
故答案为:16π.
点评 本题考查球的表面积,球的内接体问题,解答关键是确定出球心的位置,利用直角三角形列方程式求解球的半径.需具有良好空间形象能力、计算能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com