精英家教网 > 高中数学 > 题目详情

【题目】已知方程有且只有两个解,则以下判断正确的是

A. B.

C. D.

【答案】D

【解析】

由题意知函数fx)=lnx﹣2ax+1的图象与x轴有两个交点,设fx)=lnx﹣2ax+1,由导数的运算得:a>0且fx)在区间(0,)为增函数,在区间(,+∞)为减函数,由图象知fxmaxf)=﹣ln2a>0,结合f(1)=1﹣2a>0,得到选项.

fx)=lnx﹣2ax+1,

f′(x2a

a≤0时,f′(x)>0,fx)在(0,+∞)为增函数,显然不满足题意.

a>0时,

由0时,f′(x)>0,由x时,f′(x)<0,

fx)在区间(0,)为增函数,在区间(,+∞)为减函数,

fxmaxf)=﹣ln2a

由方程lnx+1=2ax有且只有两个解x1x2x1x2),

fx)=lnx﹣2ax+1的图象与x轴有两个交点,

,即x1x2且0<2a<1,③

f(1)=1﹣2a>0,

由零点定理可得,x1<1

结合③④得:

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】的内角A,B,C的对边分别为abc,且B为钝角,

(1);(2)求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)若对任意恒成立,求的取值范围;

2,讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校艺术节对四件参赛作品只评一件一等奖,在评奖揭晓前,甲,乙,丙,丁四位同学对这四件参赛作品预测如下:

甲说:作品获得一等奖”; 乙说:作品获得一等奖”;

丙说:两件作品未获得一等奖”; 丁说:作品获得一等奖”.

评奖揭晓后,发现这四位同学中只有两位说的话是对的,则获得一等奖的作品是_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为,将直线绕极点逆时针旋转个单位得到直线

(1)求的极坐标方程;

(2)设直线和曲线交于两点,直线和曲线交于两点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是2018年第一季度五省GDP情况图,则下列描述中不正确的是( )

A. 与去年同期相比2018年第一季度五个省的GDP总量均实现了增长

B. 2018年第一季度GDP增速由高到低排位第5的是浙江省

C. 2018年第一季度GDP总量和增速由高到低排位均居同一位的省只有1

D. 去年同期河南省的GDP总量不超过4000亿元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求函数上的最大值;

(Ⅱ)讨论函数的零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年11月21日,意大利奢侈品牌“”在广告中涉嫌辱华,中国明星纷纷站出来抵制该品牌,随后京东、天猫、唯品会等中国电商平台全线下架了该品牌商品,当天有大量网友关注此事件,某网上论坛从关注此事件跟帖中,随机抽取了100名网友进行调查统计,先分别统计他们在跟帖中的留言条数,再把网友人数按留言条数分成6组:得到如图所示的频率分布直方图;

并将其中留言不低于40条的规定为“强烈关注”,否则为“一般关注”,对这100名网友进一步统计得到列联表的部分数据如下表.

一般关注

强烈关注

合计

45

10

55

合计

100

(1)在答题卡上补全列联表中数据;并判断能否有95%的把握认为网友对此事件是否为“强烈关注”与性别有关?

(2)现已从“强烈关注”的网友中按性别分层抽样选取了5人,再从这5人中选取2人,求这2人中至少有1名女性的概率.

参考公式及数据:

0.05

0.010

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)

参加书法社团

未参加书法社团

参加演讲社团

8

5

未参加演讲社团

2

30

(1)从该班随机选1名同学,求该同学至少参加一个社团的概率;

(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.

查看答案和解析>>

同步练习册答案