精英家教网 > 高中数学 > 题目详情
5.已知P为双曲线$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1$上的动点,点M是圆(x+5)2+y2=4上的动点,点N是圆(x-5)2+y2=1上的动点,则|PM|-|PN|的最大值是9.

分析 由已知条件知道双曲线的两个焦点为两个圆的圆心和半径,再利用平面几何知识把|PM|-|PN|转化为双曲线上的点到两焦点之间的距离即可求|PM|-|PN|的最最大值.

解答 9解:双曲线双曲线$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1$上的两个焦点分别是F1(-5,0)与F2(5,0),
则这两点正好是两圆(x+5)2+y2=4和(x-5)2+y2=1的圆心,半径分别是r1=2,r2=1,
∵|PF1|-|PF2|=2a=6,
∴|PM|max=|PF1|+2,|PN|min=|PF2|-1,
∴|PM|-|PN|的最大值=(|PF1|+2)-(|PF2|-1)=6+3=9,
|PM|-|PN|的最大值为9,
故答案为:9

点评 本题主要考查了双曲线的简单性质和双曲线与圆的关系,着重考查了学生对双曲线定义的理解和应用,以及对几何图形的认识能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.国庆节前夕,甲、乙两同学相约10月1日上午8:00到8:30之间在7路公交赤峰二中站点乘车去红山公园游玩,先到者若等了10分钟还没有等到后到者,则需发短信联系.假设两人的出发时间是独立的,在8:00到8:30之间到达7路公交赤峰二中站点是等可能的,则两人不需要发短信联系就能见面的概率是$\frac{5}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=ln|2x-1|的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知x>0,y>0,且x+y=2xy,则x+4y的最小值为(  )
A.4B.$\frac{7}{2}$C.$\frac{9}{2}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.不等式组$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{y≤-kx+4k}\end{array}\right.$(k>0)所表示平面区域的面积为S,则$\frac{{k}^{2}+1}{S}$的最小值等于(  )
A.$\frac{3}{4}$B.$\frac{3}{2}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={x|x≥3或x≤1},B={x|2<x<4},则(∁RA)∩B=(  )
A.(1,3)B.(1,4)C.(2,3)D.(2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的前n项和为Sn,且${S}_{n}={2}^{n+1}-2$.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2a1+log2a2+…+log2an,求使(n-8)bn≥nk对任意n∈N+恒成立的实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知不等式ax2+x+c>0的解集为{x|1<x<3}.
(1)求a,c的值;
(2)若不等式ax2+2x+4c>0的解集为A,不等式3ax+cm<0的解集为B,且A?B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.数列{an}中,a1=2,an+1=2an-1 则a3=5.

查看答案和解析>>

同步练习册答案