分析 (1)由等可能事件概率计算公式能求出某员工被抽到的概率,由分层抽样性质能求出科研小组中男女员工的人数.
(2)由相互独立事件乘法公式和互斥事件加法公式能求出选出的两名员工中恰有一名女员工的概率.
解答 解:(1)∵M科技公司从45名男员工、30名女员工中按照分层抽样的方法组建了一个5人的科研小组,
∴某员工被抽到的概率p=$\frac{5}{45+30}$=$\frac{1}{15}$,
由分层抽样性质得男员工被抽到人数为:45×$\frac{1}{15}$=3(人),
女员工被抽到人数为:30×$\frac{1}{15}$=2(人),
∴科研小组中男女员工的人数分别为3人和2人.
(2)选出的两名员工中恰有一名女员工的概率:
p′=$\frac{3}{5}×\frac{2}{5}+\frac{2}{5}×\frac{3}{5}$=$\frac{12}{25}$.
点评 本题考查概率的求法和分层抽样的应用,是基础题,解题时要认真审题,注意相互独立事件乘法公式和互斥事件加法公式的合理运用.
科目:高中数学 来源: 题型:选择题
A. | p∧q | B. | (¬p)∧q | C. | (¬p)∨(¬q) | D. | p∧(¬q) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
有心理障碍 | 没有心理障碍 | 总计 | |
女生 | 10 | 30 | |
男生 | 70 | 80 | |
总计 | 20 | 110 |
P(X2≥x0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
x0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
有关系 | 无关系 | 不知道 | |
40岁以下 | 800 | 450 | 200 |
40岁以上(含40岁) | 100 | 150 | 300 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com