【题目】[选修4-4:坐标系与参数方程选讲]
在直角坐标系xOy中,圆C的方程为(x﹣1)2+y2= ,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,点M的极坐标为(2,θ),过点M斜率为1的直线交圆C于A,B两点.
(1)求圆C的极坐标方程;
(2)求|MA||MB|的范围.
【答案】
(1)解:∵圆C的方程为(x﹣1)2+y2= ,即 =0,
∴由x=ρcosθ,y=ρsinθ,得圆C的极坐标方程为: .
(2)解:∵点M的极坐标为(2,θ),∴点M的直角坐标为(2cosθ,2sinθ),
∴直线l的参数方程为 ,
直线l与圆C交于A,B两点,把直线参数方程代入圆C方程,得:
三,
,
解得0<θ< , ,
根据直线参数方程的几何意义得|MA||MB|=|t1t2|=| |,
∴|MA||MB|的取值范围是( , ).
【解析】(1)由x=ρcosθ,y=ρsinθ,能求出圆C的极坐标方程.(2)点M的直角坐标为(2cosθ,2sinθ),从而直线l的参数方程为 ,把直线参数方程代入圆C方程,得 ,由此利用根的判别式根据直线参数方程的几何意义能求出|MA||MB|的取值范围.
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且区间D的长度为12-t(视区间[a,b]的长度为b-a).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足an+2= ,且a1=1,a2=2.
(1)求a3﹣a6+a9﹣a12+a15的值;
(2)设数列{an}的前n项和为Sn , 当Sn>2017时,求n的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆C: + =1(a>b>0)的离心率为 ,过左焦点任作直线l,交椭圆的上半部分于点M,当l的斜率为 时,|FM|= .
(1)求椭圆C的方程;
(2)椭圆C上两点A,B关于直线l对称,求△AOB面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数学家欧拉在1765年发现,任意三角形的外心、重心、垂心位于同一条直线上,这条直线称为欧拉线已知的顶点,若其欧拉线的方程为,则顶点的坐标为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,过其右焦点F且与x轴垂直的直线交椭圆C于P,Q两点,椭圆C的右顶点为R,且满足.
(1)求椭圆C的方程;
(2)若斜率为k(其中)的直线l过点F,且与椭圆交于点A,B,弦AB的中点为M,直线OM与椭圆交于点C,D,求四边形ACBD面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某渔业公司今年初用98万元购进一艘渔船用于捕捞,第一年需各种费用12万
元,从第二年开始包括维修费在内,每年所需费用均比上一年增加4万元,该船每年捕捞的
总收入为50万元.
(1)该船捕捞几年开始盈利(即总收入减去成本及所有费用之差为正值)?
(2)该船捕捞若干年后,处理方案有两种:
①当年平均盈利达到最大值时,以26万元的价格卖出;
②当盈利总额达到最大值时,以8万元的价格卖出.问哪一种方案较为合算,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=8lnx+15x﹣x2 , 数列{an}满足an=f(n),n∈N+ , 数列{an}的前n项和Sn最大时,n=( )
A.15
B.16
C.17
D.18
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com