精英家教网 > 高中数学 > 题目详情

已知函数对定义域内的任意都有=,且当时其导函数满足

A.             B.

C.             D.

 

【答案】

C

【解析】

试题分析:根据题意,由于函数对定义域内的任意都有=,可知函数关于x=2对称,同时根据条件时,有那么说明了当,当x>2时,递增,当x<2时单调递减,则可知函数的单调性,同时结合那么可知,故选C.

考点:函数的单调性

点评:解决的关键是对于函数的单调性的判定以及周期性的运用,属于基础题。

 

练习册系列答案
相关习题

科目:高中数学 来源:2014届山东省高二下学期3月月考理科数学试卷(解析版) 题型:选择题

已知函数对定义域内的任意都有=,且当时其导函数满足则 (   )

A.             B.

C.             D.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省高三高考模拟卷(二)文科数学试卷(解析版) 题型:选择题

已知函数对定义域内的任意都有,且当时,其导函数满足,若,则有

                

               

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广西平南县六陈高级中学高三5月模拟考试文科数学试卷(解析版) 题型:选择题

已知函数对定义域内的任意都有=,且当时其导函数满足则(  )

A.             B.

C.             D.

 

查看答案和解析>>

科目:高中数学 来源:2010年上海市上海中学高三数学综合练习试卷(3)(解析版) 题型:解答题

已知函数对定义域内的任意x的值都有-1≤f(x)≤4,则a的取值范围为   

查看答案和解析>>

同步练习册答案