精英家教网 > 高中数学 > 题目详情

【题目】某产品在某销售点的零售价x(单位:元)与每天的销售量y(单位:个)的统计数据如表所示:

x

16

17

18

19

y

50

34

41

31

由表可得回归直线方程 中的 ,根据模型预测零售价为20元时,每天的销售量约为(
A.30
B.29
C.27.5
D.26.5

【答案】D
【解析】解:由题意, =17.5, =39, ∴样本中心点为(17.5,39),
∵数据的样本中心点在线性回归直线上,39=﹣5×17.5+
=126.5
∴x=20时,y=﹣100+126.5=26.5万元.
故选:D.
首先求出所给数据的平均数,得到样本中心点,根据线性回归直线过样本中心点,求出方程中的一个系数,得到线性回归方程,把20代入,预报出结果.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某家庭进行理财投资,根据长期收益率市场预测,投资债券类稳健型产品的收益与投资额成正比,投资股票类风险型产品的收益与投资额的算术平方根成正比,已知两类产品各投资1万元时的收益分别为0.125万元和0.5万元,如图:

(Ⅰ)分别写出两类产品的收益y(万元)与投资额x(万元)的函数关系;
(Ⅱ)该家庭有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,最大收益是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x),定义
(Ⅰ)写出函数F(2x﹣1)的解析式;
(Ⅱ)若F(|x﹣a|)+F(2x﹣1)=0,求实数a的值;
(Ⅲ)当 时,求h(x)=cosxF(x+sinx)的零点个数和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上. (Ⅰ)求异面直线D1E与A1D所成的角;
(Ⅱ)若二面角D1﹣EC﹣D的大小为45°,求点B到平面D1EC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C的方程为: =1
(1)求双曲线C的离心率;
(2)求与双曲线C有公共的渐近线,且经过点A(﹣3,2 )的双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b∈R,若a2+b2﹣ab=1,则ab的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=log2(x+2)的定义域是(
A.[2,+∞)
B.[﹣2,+∞)
C.(﹣2,+∞)
D.(﹣∞,﹣2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,弦CD与AB垂直,并与AB相交于点E,点F为弦CD上异于点E的任意一点,连接BF、AF并延长交⊙O于点M、N.
(1)求证:B、E、F、N四点共圆;
(2)求证:AC2+BFBM=AB2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项等比数列{an}的前n项和为Sn , 且a2a3=a5 , S4=10S2
(1)求数列{an}的通项公式;
(2)设bn=(2n﹣1)an , 求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案