精英家教网 > 高中数学 > 题目详情
13.已知已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,离心率为e.直线l:y=ex+a与x轴,y轴分别交于A,B两点,M是直线l与椭圆C的一个公共点,若$\overrightarrow{AM}$=e$\overrightarrow{AB}$,则该椭圆的离心率e=$\frac{\sqrt{5}-1}{2}$.

分析 求出A,B的坐标,联立直线方程和椭圆方程,求得交点M,再由向量的共线知识,即可得到答案.

解答 解:由于直线l:y=ex+a与x轴、y轴分别交于点A,B,
则A(-$\frac{a}{e}$,0),B(0,a),
$\left\{\begin{array}{l}{y=ex+a}\\{{b}^{2}{x}^{2}+{a}^{2}{y}^{2}={a}^{2}{b}^{2}}\end{array}\right.$消去y,
由e=$\frac{c}{a}$,得x2+2cx+c2=0,
解得M(-c,a-ec),
由|AM|=e|AB|,即有$\overrightarrow{AM}$=e$\overrightarrow{AB}$,即为
(-c+$\frac{a}{e}$,a-ec)=e($\frac{a}{e}$,a),
即有a-ec=ae,由e=$\frac{c}{a}$可得1-e2=e,
解得e=$\frac{\sqrt{5}-1}{2}$(负的舍去),
故答案为:$\frac{\sqrt{5}-1}{2}$.

点评 本题考查椭圆方程和性质,考查直线方程和椭圆方程联立,消去未知数,考查共线向量的坐标表示,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.某同学先后投掷一枚骰子两次,第一次向上的点数记为x,第二次向上的点数记为y,在直角坐标系xoy中,以(x,y)为坐标的点落在直线2x-y=1上的概率为(  )
A.$\frac{1}{12}$B.$\frac{1}{9}$C.$\frac{5}{36}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知点(α,-1)在函数y=log2x的图象上,则函数y=xα的定义域为(  )
A.{x|x≥0}B.{x|x>0}C.{x|x∈R,x≠0}D.R

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和Sn=n2+2n,数列{bn}满足3nbn+1=(n+1)an+1-nan,且b1=3.
(1)求an,bn
(2)若Tn为数列{bn}的前n项和,求Tn,并求满足Tn<7时n的最大值..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴为正半轴为极轴,已知斜率为$\sqrt{3}$的直线l经过点A(2$\sqrt{3}$,$\frac{π}{6}$),曲线C的直角坐标方程为y2=8x.
(1)求直线l的参数方程和曲线C的极坐标方程;
(2)设直线l个曲线C交于M,N两点,求弦长|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图.长方体ABCD-A1B1C1D1中,E,F分别是B1C1,C1D1上的点,G,H分别是BC,CD上的点.
(1)若EF分别是B1C1,C1D1的中点,证明:四边形BEFD为等腰梯形;
(2)若C1E=CG,C1F=CH,证明:四边形EFHG为矩形;
(3)该长方体的三个面的对角线长分别为a,b,c,求长方体对角线AC1的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,四棱锥P-ABCD中,底面ABCD是边长为2的菱形,且∠ABC=60°,侧面PDC为等边三角形,且与底面ABCD垂直,M为PB的中点.
(Ⅰ)求证:PA⊥DM;
(Ⅱ)求直线PC与平面DCM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.当关于x的方程的根满足下列条件时,求实数a的取值范围:
(1)方程x2-ax+a2+2=0的两个根一个大于2,另一个小于2;
(2)方程ax2+3x+4a=0的两根都小于1;
(3)方程7x2-(a+13)x+a2-a-2=0的一个根在(0,1)内,另一个根在(1,2)内.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在边长为2的菱形ABCD中,∠ABC=60°,PC⊥平面ABCD,PC=2,E,F是PA和AB的中点,求PA与平面PBC所成角的正弦值.

查看答案和解析>>

同步练习册答案