精英家教网 > 高中数学 > 题目详情

【题目】已知正方体的棱长为,点分别是棱的中点,点在平面内,点在线段上,若,则的最小值为______

【答案】

【解析】

取B1C1中点O,则MO面A1B1C1D1,即MOOP,可得点P在以O为圆心,2以半径的位于平面A1B1C1D1内的半圆上.即O到A1N的距离减去半径即为PQ长度的最小值,作OH⊥A1N于N,可得OH=,PQ长度的最小值为

如图,取B1C1中点O,则MO面A1B1C1D1,即MO⊥OP,

,则OP=2,∴点P在以O为圆心,2以半径的位于平面A1B1C1D1内的半圆上.

可得O到A1N的距离减去半径即为PQ长度的最小值,

作OH⊥A1N于N,

△A1ON的面积为=6,

,可得OH=,∴PQ长度的最小值为

故答案为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且满足向量 =(cosA,cosB), =(a,2c﹣b),
(1)求角A的大小;
(2)若a=2 ,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是菱形,且AB=AA1 , ∠A1AB=∠A1AD=60°.

(1)求证:平面A1BD⊥平面A1AC;
(2)若BD= D=2,求平面A1BD与平面B1BD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的三个内角A,B,C所对应的边为a,b,c,若A,B,C依次成等差数列且a2+c2=kb2 , 则实数k的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的两个焦点坐标分别为F1(-,0)F2(,0),且椭圆过点

(1)求椭圆方程;

(2)过点作不与y轴垂直的直线l交该椭圆于MN两点,A为椭圆的左顶点,证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在圆锥中,已知,⊙O的直径,点C在底面圆周上,且的中点.

(Ⅰ)证明:∥平面

(Ⅱ)证明:平面平面

(Ⅲ)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点0(0,0),P(6,8),将向量 绕点O逆时针方向旋转 后得向量 ,则点Q的坐标是(
A.(﹣7 ,﹣
B.(﹣7
C.(﹣4 ,﹣2)
D.(﹣4 ,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个结论:

当a为任意实数时,直线(a﹣1)x﹣y+2a+1=0恒过定点P,则过点P且焦点在y轴上的抛物线的标准方程是

已知双曲线的右焦点为(5,0),一条渐近线方程为2x﹣y=0,则双曲线的标准方程是

抛物线的准线方程为.

已知双曲线,其离心率e(1,2),则m的取值范围是(﹣12,0).

其中正确命题的序号是___________.(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校文学院和理学院的学生组队参加大学生电视辩论赛,文学院推荐了2名男生,3名女生,理学院推荐了4名男生,3名女生,文学院和理学院所推荐的学生一起参加集训,由于集训后学生水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队.
(1)求文学院至少有一名学生入选代表队的概率;
(2)某场比赛前,从代表队的6名学生在随机抽取4名参赛,记X表示参赛的男生人数,求X的分布列与数学期望.

查看答案和解析>>

同步练习册答案