精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xOy中,曲线C1 (t为参数),在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4.
(1)求出曲线C2的直角坐标方程;
(2)若C1与C2相交于A,B两点,求线段AB的长.

【答案】
(1)解:曲线C2:ρ=4,可得直角坐标方程:x2+y2=16.
(2)解:把曲线C1 (t为参数),代入圆的方程可得:t2+3 t﹣9=0,

∴t1+t2=-3 ,t1t2=﹣9,

∴|AB|=|t1﹣t2|= = =3


【解析】(1)曲线C2:ρ=4,利用互化公式可得直角坐标方程.(2)把曲线C1的参数代入圆的方程可得:t2+3 t﹣9=0,利用根与系数的关系及其|AB|=|t1﹣t2|= ,即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)对任意实数x,y恒有f(x)=f(y)+f(x﹣y),当x>0时,f(x)<0,且f(2)=﹣3.
(1)求f(0),并判断函数f(x)的奇偶性;
(2)证明:函数f(x)在R上的单调递减;
(3)若不等式f(2x﹣3)﹣f(﹣22x)<f(k2x)+6在区间(﹣2,2)内恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,既是偶函数,又在区间上单调递减的是

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,既是偶函数,又在区间上单调递减的是

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 是(﹣∞,+∞)上的增函数,那么a的取值范围是(
A.[ ,3)
B.(0,3)
C.(1,3)
D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某商店一个月内每天的顾客人数进行统计,得到样本的茎叶图(如图所示).则该样本的中位数、众数、极差分别是(

A.46 45 56
B.46 45 53
C.47 45 56
D.45 47 53

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

如图所示,正方形与矩形所在平面互相垂直,

(1)若点分别为的中点,求证:平面平面

(2)在线段上是否存在一点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设P表示一个点,a,b表示两条直线,α,β表示两个平面,给出下列四个命题,其中正确的命题是(
①P∈a,P∈αaα
②a∩b=P,bβaβ
③a∥b,aα,P∈b,P∈αbα
④α∩β=b,P∈α,P∈βP∈b.
A.①②
B.②③
C.①④
D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在△ABC中,角A、B、C所对的边分别为a、b、c,且 =
(1)求角A的大小;
(2)若a=4,求 b﹣c的最大值.

查看答案和解析>>

同步练习册答案