精英家教网 > 高中数学 > 题目详情
如图,圆周上按顺时针方向标有1,2,3,4,5五个点,一只青蛙按瞬时针方向绕圆从一个点跳到下一个点.若它停在奇数点上,则下一次只能跳一个点,若停在偶数点上,则可以连续跳2个点.该青蛙从5这点起跳,经2009次跳后它将停在的点是(  )
A、1B、2C、3D、4
考点:归纳推理
专题:推理和证明
分析:根据题意,分析可得青蛙的跳动规律为5-1-2-4-1-2,周期为3;又由2009=3×669+2,经过2009次跳后它停在的点所对应的数为2.
解答: 解:由5起跳,5是奇数,沿顺时针下一次只能跳一个点,落在1上.
由1起跳,1是奇数,沿顺时针下一次只能跳一个点,落在2上
2是偶数,沿沿顺时针跳两个点,落在4上.
由4起跳,是偶数,沿沿顺时针跳两个点,落在1上.
故落点顺序为1_2_4且呈以周期为3的规律变化;
又由2009=3×669+2,
∴经过2009次跳后它停在的点所对应的数为2.
故选:B.
点评:本题考查归纳推理、数列的性质和应用,解题时要审题,仔细求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若命题p“不等式|x|≥m-1的解集为R”是命题q“f(x)=(5-2m+a)x是增函数”的充分而不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l的参数方程:
x=t
y=1+2t
(t为参数)与圆C的极坐标方程:ρ=2
2
sin(θ+
π
4
),则直线l与C的公共点个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=3,an+1=an+p•2n+1(n∈N*,p为常数),a1,a2+1,a3成等差数列.(1)求p的值和数列{an}的通项公式;(2)设数列{bn}的前n项和为Sn,且b2=4,满足4 Sn-n=(an-n) bn(n∈N*),求证:(1+
1
bn
 
1
2
bn
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的各项均为正数.
(1)若数列{an}是等比数列,求证:数列{
na1a2…an
}是等比数列;
(2)若数列{lganan+1}是等差数列,试判断{an}是否一定为等比数列?若一定是,请给出证明;若不一定是,请给出一反例.
(3)若数列{lg(anan+1an+2)}和数列{lg(anan+1an+2an+3)}均为等差数列,试判断数列{an} 是否为等比数列?请证明你的结论.
本题可进一步探索:
若数列{lg(anan+1…an+p-1)}和数列{lg(anan+1…an+g-1)}均为等差数列,其p,q≥2且互质,试判断数列{an} 是否为等比数列?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

设D为不等式组
x+y≤1
2x-y≥-1
x-2y≤1
表示的平面区域,点B(a,b)为坐标平面xOy内一点,若对于区域D内的任一点A(x,y),都有
OA
OB
≤1
成立,则a+b的最大值等于(  )
A、2B、1C、0D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

一个四棱锥的三视图如图所示,那么对于这个四棱锥,下列说法中正确的是(  ) 
A、最长棱的棱长为
6
B、最长棱的棱长为3
C、侧面四个三角形中有且仅有一个是正三角形
D、侧面四个三角形都是直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=lnx-x-a有两个不同的零点,则实数a的取值范围是(  )
A、(-∞,-1]
B、(-∞,-1)
C、[-1,+∞)
D、(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

在区间[0,1]上任取2个数a,b,若向量
m
=(a,b),则|
m
|≤1的概率是(  )
A、
1
2
B、
1
4
C、
π
2
D、
π
4

查看答案和解析>>

同步练习册答案