分析 设直线方程为y=kx+$\frac{p}{2}$,代入x2=2py,利用韦达定理、抛物线的定义,即可证明结论.
解答 证明:(1)设直线方程为y=kx+$\frac{p}{2}$,
代入x2=2py,可得x2-2kpx-p2=0,
∴x1x2=-p2,y1y2=$\frac{{{x}_{1}}^{2}{{x}_{2}}^{2}}{4{p}^{2}}$=$\frac{{p}^{2}}{4}$;
(2)AB=y1+$\frac{p}{2}$+y2+$\frac{p}{2}$=y1+y2+p;
(3)∵y1+y2=$\frac{{{x}_{1}}^{2}+{{x}_{2}}^{2}}{2p}$=2kp+p,
∴$\frac{1}{AF}$+$\frac{1}{BF}$=$\frac{1}{{y}_{1}+\frac{p}{2}}$+$\frac{1}{{y}_{2}+\frac{p}{2}}$=$\frac{{y}_{1}+{y}_{2}+p}{\frac{{p}^{2}}{2}+\frac{p}{2}({y}_{1}+{y}_{2})}$=$\frac{2kp+p}{k{p}^{2}+{p}^{2}}$=$\frac{2}{p}$.
点评 本题考查直线与抛物线的位置关系,考查抛物线的定义,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a>1 | B. | a>$\frac{1}{3}$ | C. | -1<a<$\frac{1}{3}$ | D. | a<1或a>$\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{7}$ | B. | 2$\sqrt{3}$ | C. | 3$\sqrt{7}$ | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com