精英家教网 > 高中数学 > 题目详情

【题目】如图,在正四棱柱中,,点的中点,点上,设二面角的大小为.

1)当时,求的长;

2)当时,求的长.

【答案】12

【解析】

1)建立空间直角坐标系,求出坐标,设M01z),分别求出面A1DN和平面MDN的法向量坐标,再由已知可得坐标,即可求解;

2)根据(1)的法向量坐标,运用空间向量面面角公式,即可得出结论.

D为原点,DAx轴正半轴,DCy轴正半轴,DD1z轴正半轴,

建立空间直角坐标系,则A100),A1102),

N10),C010)),设M01z),

设平面MDN的法向量

,即

,则

平面MDN的法向量的一个法向量为

设平面A1DN的法向量为,则

,取,则

.

1)由题意:

2)由题意:

解得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】近年来,随着网络的普及和智能手机的更新换代,各种方便的相继出世,其功能也是五花八门.某大学为了调查在校大学生使用的主要用途,随机抽取了名大学生进行调查,各主要用途与对应人数的结果统计如图所示,现有如下说法:

①可以估计使用主要听音乐的大学生人数多于主要看社区、新闻、资讯的大学生人数;

②可以估计不足的大学生使用主要玩游戏;

③可以估计使用主要找人聊天的大学生超过总数的.

其中正确的个数为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数由方程到确定,对于函数给出下列命题:

①对任意,都有恒成立:

,使得同时成立;

③对于任意恒成立;

④对任意,

都有恒成立.其中正确的命题共有( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,过焦点且垂直于轴的直线被椭圆所截得的弦长为.

1)求椭圆的标准方程;

2)若经过点的直线与椭圆交于不同的两点是坐标原点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E为棱AD的中点,异面直线PA与CD所成的角为90°.

(I)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;

(II)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知非空集合是由一些函数组成,满足如下性质:对任意均存在反函数,且对任意,方程均有解;对任意,若函数为定义在上的一次函数,则.

1)若,均在集合中,求证:函数

2)若函数)在集合中,求实数的取值范围;

3)若集合中的函数均为定义在上的一次函数,求证:存在一个实数,使得对一切,均有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市为了了解“微信支付”与“支付宝支付”的情况(“微信支付”与“支付宝支付”统称为“移动支付”),对消费者在该超市在20191-6月的支付方式进行统计,得到如图所示的折线图,则下列判断正确的是(

①这6个月中使用“微信支付”的总次数比使用“支付宝支付”的总次数多

②这6个月中使用“微信支付”的消费总额比使用“支付宝支付”的消费总额大

③这6个月中4月份平均每天使用“移动支付”的次数最多

2月份平均每天使用“移动支付”比5月份平均每天使用“移动支付”的次数多

A.①③B.①②③C.①③④D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆)的左右焦点分别为,椭圆的上顶点为点,点为椭圆上一点,且.

1)求椭圆的离心率;

2)若,过点的直线交椭圆于两点,求线段的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C)的焦点F到准线l的距离为2,直线过点F且与抛物线交于MN两点,直线过坐标原点O及点M且与l交于点P,点Q在线段.

(1)求直线的斜率;

(2)若成等差数列,求点Q的轨迹方程.

查看答案和解析>>

同步练习册答案