【题目】设函数
(1)若函数在上递增,在上递减,求实数的值.
(2)讨论在上的单调性;
(3)若方程有两个不等实数根,求实数的取值范围,并证明.
【答案】(1).(2)答案见解析.(3),证明见解析
【解析】
(1) 通过求导来判断极值点,以此求出a的值;
(2)求导后对分类讨论,分,,且三种情况,讨论函数的单调性即可;
(3)构造函数,通过导数研究的大致图象,数形结合可得的取值范围,要证明,即证,即证,做差转化为利用导数研究函数的最小值即可证明.
(1)由于函数在上递增,在上递减,
由单调性知是函数的极大值点,无极小值点,所以,
∵,
故,
此时满足是极大值点,所以;
(2)∵,
∴,
①当时,在上单调递增.
②当,即或时,,
∴在上单调递减.
③当且时,由 得.
令得;
令得.
∴在上单调递增,在上单调递减.
综上,当时,在上递增;
当或时,在上递减;
当且时,在上递增,在上递减.
(3)令,
,
当时,,单调递减;
当时,,单调递增;
故在处取得最小值为,
又当,
所以函数大致图象为:
由图象知:.
不妨设,则有,
要证,只需证即可,
令,
则
在上单调递增,
故
即,
,
.
科目:高中数学 来源: 题型:
【题目】将 颗珠子分成 堆.若通过每次从其中 堆中各取走一颗珠子,而最后取完,则称这样的分法为“和谐的”.试给出和谐分法的充分必要条件,并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】凸多面体的每个面均为三角形,每条棱上均标记字母之一,且每个面的三条边上恰各有一个。对每一个面,当旋转多面体使该面在我们眼前时,按照字母顺序观察其三边,若是逆时针方向,则称其为正面;否则,称其为反面。证明:正面与反面的数目之差能被4整除。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知焦点在轴上的抛物线过点,椭圆的两个焦点分别为 ,其中 与的焦点重合,过与长轴垂直的直线交椭圆于两点且,曲线是以原点为圆心以 为半径的圆.
(1)求与及的方程;
(2)若动直线与圆相切,且与交与两点,三角形 的面积为,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系xOy中,曲线C1的普通方程为,曲线C2参数方程为为参数),以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,直线l的极坐标方程为.
(1)求C1的参数方程和的直角坐标方程;
(2)已知P是C2上参数对应的点,Q为C1上的点,求PQ中点M到直线的距离取得最大值时,点Q的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将4个编号为1、2、3、4的小球放人编号为1、2、3、4的盒子中.
(1)恰好有一个空盒,有多少种放法?
(2)每个盒子放一个球,且恰好有一个球的编号与盒子的编号相同,有多少种放法?
(3)把4个不同的小球换成4个相同的小球,恰有一个空盒,有多少种放法?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=Asin(2ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示
(1)求A,ω,φ的值;
(2)求图中a,b的值及函数f(x)的递增区间;
(3)若α∈[0,π],且f(α)=,求α的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙二人独立破译同一密码,甲破译密码的概率为,乙破译密码的概率为.记事件A:甲破译密码,事件B:乙破译密码.
(1)求甲、乙二人都破译密码的概率;
(2)求恰有一人破译密码的概率;
(3)小明同学解答“求密码被破译的概率”的过程如下:
解:“密码被破译”也就是“甲、乙二人中至少有一人破译密码”所以随机事件“密码被破译”可以表示为所以
请指出小明同学错误的原因?并给出正确解答过程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com