精英家教网 > 高中数学 > 题目详情
16.已知双曲线$\frac{x^2}{m}-\frac{y^2}{5}=1$的右焦点与抛物线y2=12x的焦点相同,则此双曲线的渐近线方程为(  )
A.$y=±\frac{{\sqrt{5}}}{2}x$B.$y=±\frac{{2\sqrt{5}}}{5}x$C.$y=±\frac{{\sqrt{5}}}{3}x$D.$y=±\frac{{3\sqrt{5}}}{5}x$

分析 由已知条件求出双曲线的一个焦点为(3,0),可得m+5=9,求出m=4,由此能求出双曲线的渐近线方程.

解答 解:∵抛物线y2=12x的焦点为(3,0),
∴双曲线的一个焦点为(3,0),即c=3.
双曲线$\frac{x^2}{m}-\frac{y^2}{5}=1$可得
∴m+5=9,
∴m=4,
∴双曲线的渐近线方程为:$y=±\frac{\sqrt{5}}{2}x$.
故选:A.

点评 本题主要考查圆锥曲线的基本元素之间的关系问题,同时双曲线、椭圆的相应知识也进行了综合性考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知点A(0,2),B(4,0),C(-2,1),若直线CD与直线AB相交,且交点D在线段AB上,直线CD的斜率为k,求$k+\frac{1}{2}+\frac{1}{{k+\frac{1}{2}}}$的取值范围(  )
A..$(2,\frac{10}{3})$B.$(-∞,\frac{10}{3})$C.$[2,\frac{10}{3}]$D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.经过直线2x-y+3=0与圆x2+y2+2x-4y+1=0的两个交点,且面积最小的圆的方程是5x2+5y2+6x-18y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.关于x,y的一元二次方程组$\left\{{\begin{array}{l}{2x+3y=1}\\{x-2y=2}\end{array}}\right.$的系数矩阵$(\begin{array}{cc}2&3\\ 1&-2\end{array}\right.)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=sin(2x+φ),0<φ≤π图象的一条对称轴是直线$x=\frac{π}{8}$,则φ=$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知点P、Q分别为函数f(x)=x2+1(x≥0)和$g(x)=\sqrt{x-1}$图象上的点,则点P和Q两点距离的最小值为$\frac{{3\sqrt{2}}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知各项均为正数的数列{an}的前n项和Sn满足S1>1,且$6{S_n}=a_n^2+3{a_n}+2$(n∈N*).
(1)求{an}的通项公式;
(2)设数列{bn}满足${b_n}=\left\{{\begin{array}{l}{{a_n},n为偶数}\\{{2^{a_n}},n为奇数}\end{array}}\right.$,Tn为数列{bn}的前n项和,求Tn
(3)设${C_n}=\frac{{{b_{n+1}}}}{b_n},(n为正整数)$,问是否存在正整数N,使得当任意正整数n>N时恒有Cn>2015成立?若存在,请求出正整数N的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知直线a的倾斜角为45°,则a的斜率是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.有3名男生,2名女生,在下列不同要求下,求不同的排列方法总数.
(1)全体排成一行,其中甲只能在中间或者两边的位置,共72种排法;
(2)全体排成一行,其中男生必须排在一起,共36种排法;
(3)全体排成一行,男生不能排在一起,共12种排法;
(4)全体排成一行,其中甲、乙、丙三人从左到右的顺序不变,共20种排法;
(5)全体排成一行,其中甲不再最左边,乙不在最右边,共78种排法;
(6)若再加入一名女生,全体排成一行,男女各不相邻,共144种排法;
(7)排成前后两排,前排3人,后排2人,共120种排法;
(8)全体排成一行,甲、乙两人中间必须有1人,共36种排法.

查看答案和解析>>

同步练习册答案