精英家教网 > 高中数学 > 题目详情

【题目】我校对高二600名学生进行了一次知识测试,并从中抽取了部分学生的成绩(满分100分)作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图.

(1)填写频率分布表中的空格,补全频率分布直方图,并标出每个小矩形对应的纵轴数据;

(2)请你估算该年级学生成绩的中位数;

(3)如果用分层抽样的方法从样本分数在[60,70)和[80,90)的人中共抽取6人,再从6人中选2人,求2人分数都在[80,90)的概率.

【答案】(1)见解析;(2)83.125.(3).

【解析】试题分析: (1)先填写完整频率分布表,由此能补全频率分布直方图.

(2)设中位数为x,利用频率分布直方图列出方程,给求出中位数.

(3)由题意知样本分数在[60,70)有8人,样本分数在[80,90)有16人,用分层抽样的方法从样本分数在[60,70)[80,90)的人中共抽取6人,则抽取的分数在[60,70)[80,90)的人数分别为2人和4人.记分数在[60,70)a1,a2,[80,90)的为b1,b2,b3,b4.由此利用列举法能求出2人分数都在[80,90)的概率.

试题解析:(1)填写频率分布表中的空格,如下表:

分 组

频 数

频 率

[50,60)

2

0.04

[60,70)

8

0.16

[70,80)

10

0.2

[80,90)

16

0.32

[90,100]

14

0.28

合 计

50

1.00

全频率分布直方图,如下图:

(2)设中位数为x,依题意得0.04+0.16+0.2+0.032×(x-80)=0.5,

解得x=83.125,所以中位数约为83.125.

(3)由题意知样本分数在[60,70)有8人,样本分数在[80,90)有16人,

用分层抽样的方法从样本分数在[60,70)和[80,90)的人中共抽取6人,

则抽取的分数在[60,70)和[80,90)的人数分别为2人和4人.

记分数在[60,70)的为a1,a2,在[80,90)的为b1,b2,b3,b4.

从已抽取的6人中任选两人的所有可能结果有15种,分别为{a1,a2},{a1,b1},{a1,b2},{a1,b3},{a1,b4},{a2,b1},{a2,b2},{a2,b3},{a2,b4},{b1,b2},{b1,b3},{b1,b4},{b2,b3},{b2,b4},{b3,b4},

2人分数都在[80,90)为事件A,

则事件A包括{b1,b2},{b1,b3},{b1,b4},{b2,b3},{b2,b4},{b3,b4}共6,所以P(A)=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,函数是奇函数.

(1)判断函数的奇偶性,并求实数的值;

(2)若对任意的,不等式恒成立,求实数的取值范围;

(3)设,若存在,使不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数,根据此数据作出了频数与频率的统计表和频率分布直方图.

分组

频数

频率

[10,15)

10

0.25

[15,20)

24

n

[20,25)

m

p

[25,30]

2

0.05

合计

M

1

(1)求出表中M,p及图中a的值;

(2)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;

(3)估计这次学生参加社区服务人数的众数、中位数以及平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形中, 交于点,现将沿折起得到三棱锥 分别是 的中点.

(1)求证:

(2)若三棱锥的最大体积为,当三棱锥的体积为,且为锐角时,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣0.5x+1,则不等式f(2x﹣3)<0.5的解集为(
A.{x|﹣1<x<1.5}
B.{x|0.5<x<2}
C.{x|x<2}
D.{x|1.5<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx,g(x)=0.5x2﹣bx,(b为常数).
(1)函数f(x)的图象在点(1,f(1))处的切线与函数g(x)的图象相切,求实数b的值;
(2)若函数h(x)=f(x)+g(x)在定义域上不单调,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的是(
A.命题“x∈R,使得x2﹣1<0”的否定是:x∈R,均有x2﹣1<0
B.命题“若x=3,则x2﹣2x﹣3=0”的否命题是:若x≠3,则x2﹣2x﹣3≠0
C.“ ”是“ ”的必要而不充分条件
D.命题“cosx=cosy,则x=y”的逆否命题是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+ax2+bx+c,x∈[﹣2,2]表示的曲线过原点,且在x=±1处的切线斜率均为﹣1,给出以下结论: ①f(x)的解析式为f(x)=x3﹣4x,x∈[﹣2,2];
②f(x)的极值点有且仅有一个;
③f(x)的最大值与最小值之和等于0.
其中正确的结论有(
A.0个
B.1个
C.2个
D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:函数对一切实数都有成立,且

)求的值.

)求的解析式.

)已知,设时,不等式恒成立, 时,是单调函数,如果满足成立的的集合记为,满足成立的的集合记为,求为全集).

查看答案和解析>>

同步练习册答案