精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线方程为,问:是否存在过点M(1,1)的直线l,使得直线与双曲线交于PQ两点,且M是线段PQ的中点?如果存在,求出直线的方程,如果不存在,请说明理由.

【答案】不存在,见解析

【解析】

先考虑斜率不存在时,显然不成立,再考虑斜率存在时设ly-1=k(x-1),联立双曲线方程,当判别式Δ>0时,由根与系数的关系得x1x2,解出k,再检验即可.

显然x=1不满足条件,设ly-1=k(x-1).

联立y-1=k(x-1)

消去y(2-k2)x2+(2k2-2k)xk2+2k-3=0,

P(x1y1),Q(x2y2),由Δ>0,得kx1x2

M(1,1)PQ的中点,得=1,解得k=2,这与k矛盾,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】命题p:α∈R,sin(π﹣α)=cosα;命题q:“0<a<4”是“关于x的不等式ax2+ax+1>0的解集是实数集R”的充分必要条件,则下面结论正确的是(
A.p是假命题
B.q是真命题
C.“p∧q”是假命题
D.“p∨q”是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的圆心在直线x﹣2y﹣3=0上,并且经过A(2,﹣3)和B(﹣2,﹣5),求圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,CA,CB分别与圆O切于A,B两点,AE是直径,OF平分∠BOE交CB的延长线于F,BD∥AC.

(1)证明:OB2=BCBF;
(2)证明:∠DBF=∠AOB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线的焦点为上任一点轴上的射影为中点为

(1)求动点的轨迹的方程;

(2)直线从下到上依次交于,与交于,直线从下到上依次交于,与交于的斜率之积为,设的面积分别为,是否存在使得成等比数列?若存在,求的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,CA,CB分别与圆O切于A,B两点,AE是直径,OF平分∠BOE交CB的延长线于F,BD∥AC.

(1)证明:OB2=BCBF;
(2)证明:∠DBF=∠AOB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别是椭圆的左、右焦点.

(1)若是该椭圆上的一个动点,求的最大值和最小值;

(2)设过定点的直线与椭圆交于不同的两点,且为锐角(其中为坐标原点),求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,A,B,C,D为平面四边形ABCD的四个内角.

(1)证明:tan =
(2)若A+C=180°,AB=6,BC=3,CD=4,AD=5,求tan +tan +tan +tan 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的各项均为正数.若对任意的n∈N* , 存在k∈N* , 使得an+k2=anan+2k成立,则称数列{an}为“Jk型”数列.
(1)若数列{an}是“J2型”数列,且a2=8,a8=1,求a2n
(2)若数列{an}既是“J3型”数列,又是“J4型”数列,证明:数列{an}是等比数列.

查看答案和解析>>

同步练习册答案