【题目】已知函数在点处的切线方程为, (其中为常数).
(1)求函数的解析式;
(2)若对任意,不等式恒成立,求实数的取值范围;
(3)当时,求证: (其中e为自然对数的底数).
【答案】(1) ;(2) ;(3)详见解析.
【解析】试题分析:(1)对函数求导根据点斜式求出切线方程;(2)构造新函数,则有在上恒成立;对函数求导分类讨论函数的单调性,求出参数范围; (3)令,求导可得取得最小值;构造, 取得最小值;当时, ,得证.
试题解析:(), ,得;又由,得,
所以.
(2)对任意,不等式恒成立;
等价于对任意,不等式恒成立;
令,则有在上恒成立;
;
若,当时, ,所以在上单调递增,
所以,当时, ;
若,当时, ,当时, ,
所以在上单调递减,在上单调递增,
所以当时, ,与题意矛盾;
综上,实数的取值范围为.
(3)令,
;令,解得;
令,解得;∴在上单调递减;在上单调递增;
故当时, 取得最小值;
,
,令,解得;令,解得;
所以在上单调递减;在上单调递增;
故当时, 取得最小值;
所以,当时, ,
即,
当且仅当时,等号成立.
科目:高中数学 来源: 题型:
【题目】已知函数,其中为参数.
(1)当时,求函数在处的切线方程;
(2)讨论函数极值点的个数,并说明理由;
(3)若对任意, 恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知一个分段函数可利用函数 来表示,例如要表示一个分段函数 ,可将函数g(x)表示为g(x)=xS(x﹣2)+(﹣x)S(2﹣x).现有一个函数f(x)=(﹣x2+4x﹣3)S(x﹣1)+(x2﹣1)S(1﹣x).
(1)求函数f(x)在区间[0,4]上的最大值与最小值;
(2)若关于x的不等式f(x)≤kx对任意x∈[0,+∞)都成立,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数f(x),若存在x∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.已知函数f(x)=ax2+(b+1)x+(b﹣1)(a≠0).
(1)当a=1,b=2时,求函数f(x)的不动点;
(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围;
(3)在(2)的条件下,若f(x)的两个不动点为x1 , x2 , 且f(x1)+x2= ,求实数b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某产品的广告费用x与销售额y的统计数据如下表
广告费用x(万元) | 4 | 2 | 3 | 5 |
销售额y(万元) | 49 | 26 | 39 | 54 |
根据上表可得回归方程 = x+ 的 为9.4,据此模型预报广告费用为6万元时销售额为( )
A.63.6万元
B.65.5万元
C.67.7万元
D.72.0万元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多面体中,四边形为等腰梯形,,,,与相交于,且,矩形底面,为线段上一动点,满足.
(Ⅰ)若平面,求实数的值;
(Ⅱ)当时,锐二面角的余弦值为,求多面体的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com