精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=-x3+ax2-4在x=2处取得极值,若m,n∈[0,1],则f'(n)+f(m)的最大值是(  )
A.-9B.-1C.1D.-4

分析 令导函数当x=2时为0,列出方程求出a值;求出二次函数f′(n)的最大值,利用导数求出f(m)的最大值,它们的和即为f(m)+f′(n)的最大值.

解答 解:求导数可得f′(x)=-3x2+2ax
∵函数f(x)=-x3+ax2-4在x=2处取得极值,
∴-12+4a=0,解得a=3
∴f′(x)=-3x2+6x
∴n∈[0,1]时,f′(n)=-3n2+6n,当n=1时,f′(n)最大,最大为3;
当m∈[0,1]时,f(m)=-m3+3m2-4
f′(m)=-3m2+6m
令f′(m)=0得m=0,m=2
所以m=1时,f(m)最大为-2
故f(m)+f′(n)的最大值为3-2=1.
故选:C.

点评 本题考查了函数在某点取得极值的条件,要注意极值点一定是导函数对应方程的根,但是导函数对应方程的根不一定是极值点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,在锐角三角形ABC中,AB=AC,以AB为直径的圆O与边BC,AC另外的交点分别为D,E,且DF⊥AC于F.
(Ⅰ)求证:DF是⊙O的切线;
(Ⅱ)若CD=3,$EA=\frac{7}{5}$,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=2bx-3b+1,在(-1,1)上存在零点,实数b的取值范围是($\frac{1}{5}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.不等式组$\left\{\begin{array}{l}{-1<x<3}\\{x>a}\end{array}\right.$的解为-1<x<3.则a的取值范围是a≤-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆E:x2+y2=1,点C(-1,0),D(0,-1),P(2,0),过P作直线l与圆E相交于A,B两点.
(1)若<$\overrightarrow{OB}$,$\overrightarrow{OP}$>=2<$\overrightarrow{OA}$,$\overrightarrow{OP}$>,求直线l的斜率;
(2)记线段AB的中点为M,求|$\overrightarrow{MC}$+$\overrightarrow{MD}$|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,正四棱锥P-ABCD的体积为2,底面积为6,E为侧棱PC的中点,则直线BE与平面PAC所成的角为600

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若函数f(x)=x3-3ax+b(a>0)的极大值为6,极小值为2,则f(x)的单调递减区间为(  )
A.(-∞,-1)B.(-1,1)C.(1,+∞)D.(-∞,-1)和(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知椭圆的中心在原点,对称轴为坐标轴,离心率e=$\frac{1}{2}$,且它的一个焦点在抛物线y2=-4x的准线上,则此椭圆的标准方程为(  )
A.$\frac{x^2}{4}$+y2=1B.$\frac{x^2}{8}$+$\frac{y^2}{6}$=1C.$\frac{x^2}{2}$+y2=1D.$\frac{x^2}{4}$+$\frac{y^2}{3}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=x3-12x+1,则f(x)的极大值为17.

查看答案和解析>>

同步练习册答案