精英家教网 > 高中数学 > 题目详情
已知数列{an}满足以下两个条件:①点(an,an+1)在直线y=x+2上;②首项a1是方程3x2-4x+1=0的整数解.
(1)求数列{an}的通项公式;
(2)等比数列{bn}中,b1=a1,b2=a2,求数列{bn}的前n项和Tn
分析:(I)由题意可得{an}是一个等差数列,且公差为2,首项为1,易得通项公式;(II)由(I)易得等比数列{bn}的首项和公比,代入求和公式可得答案.
解答:解:(I)方程3x2-4x+1=0的解为x=
1
3
,或x=1,故整数解为x=1
根据已知a1=1,an+1=an+2,即an+1-an=2,
所以数列{an}是一个等差数列,且公差为2,
故可得an=1+2(n-1)=2n-1…(6分)
(II)由(I)可知,b1=a1=1,b2=a2=3,…(8分)
故等比数列{bn}中,公比q=
b2
b1
=3,所以bn=1×3n-1=3n-1…(10分)
故数列{bn}的前n项和Tn=
b1(1-qn)
1-q
=
1-3n
1-3
=
3n-1
2
…(12分)
点评:本题查看等差数列与等比数列的通项公式,以及等比数列的求和公式,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案